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Industry Developments
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Adobe

2006 2025

Employees 6,000 30,000

Revenue $2.6B $22.0B
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Photoshop

2006 2025

Engineers 20 250

Quality Engineers 30 60

Platforms macOS, Windows
macOS, Windows, Linux (server), iOS, 
iPadOS, Browser (WASM), …

Shared Technology Groups

Process Waterfall, 18-24 month cycles Agile(ish)



Analysts (Then)



© 2025 Adobe. All Rights  Reserved.

“Organizations need to integrate security best practices, security 
testing tools and security-focused processes into their software 
development life cycle. Proper execution improves application 
security, reduces overall costs, increases customer satisfaction 
and yields a more-efficient SDLC.”

– Gartner Research, February 2006
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“Microsoft has been slowly moving to a new development 
process that will affect how partners and customers evaluate and 
test its software... The new process should help Microsoft gain 
more feedback earlier in the development cycle, but it won’t 
necessarily help the company ship its products on time or with 
fewer bugs.”

– Directions on Microsoft, March 2006
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“I’ve assigned this problem [binary search] in courses at Bell Labs 
and IBM. Professional programmers had a couple of hours to 
convert the description into a programming language of their 
choice; a high-level pseudo code was fine... Ninety percent of the 
programmers found bugs in their programs (and I wasn’t always 
convinced of the correctness of the code in which no bugs were 
found).”

– Jon Bentley, Programming Pearls, 1986

Why the Status Quo Will Fail (2006)



© 2025 Adobe. All Rights  Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
    int l = 0;
    int u = n - 1;

    while (true) {
        if (l > u) return -1;

        int m = (l + u) / 2;

        if (x[m] < v) l = m + 1;
        else if (x[m] == v) return m;
        else /* (x[m] > v) */ u = m - 1;
    }
}
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Binary Search Solution (from 2006 talk)

int* lower_bound(int* first, int* last, int x) {
    while (first != last) {
        int* middle = first + (last - first) / 2;
        if (*middle < x)
            first = middle + 1;
        else
            last = middle;
    }
    return first;
}



© 2025 Adobe. All Rights  Reserved.

Question: If we can’t write binary search…

▪ Jon Bentley’s solution is considerably more complicated (and slower)

▪ Photoshop uses this problem as a take-home test for candidates

▪ More than 90% of candidates fail

▪ Our experience teaching algorithms would indicate that more than 90% of engineers, regardless of 

experience, cannot write this simple code

▪ …then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?



Analysts (Now)
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“Almost all developers will increase their use of generative AI and 
machine learning as code assistants and low-code/no-code tools 
proliferate.”

– IDC Modern Software Development Survey, September 2024
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“More than 55% of developers automatically generate 40% or 
more of their code in their IDEs, highlighting the widespread use 
of generative AI and machine learning in software development.”

– IDC Modern Software Development Survey, September 2024
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Binary Search Solution (Copilot 2025)

int* binary_search_insert_position(int* first, int* last, int x) {
    while (first < last) {
        int* mid = first + (last - first) / 2;
        if (*mid < x) {
            first = mid + 1;
        } else {
            last = mid;
        }
    }
    return first;
}

▪ “Algorithm Naming: The function is essentially an adaptation of std::lower_bound().”
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Answer: Iterative Refinement.

▪ Current programming methodologies lend themselves to iterative refinement

▪ We don’t solve problems; we approximate solutions
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How can we write Better Code?

▪ Study how to write correct software

▪ Write algorithms once, in a general form that can be reused

▪ Focus on fundamental algorithms

▪ Compose larger systems from proven components



Generic Programming
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Generic Programming

▪ In 2006, the idea of generic programming was 

still young

▪ In 2002, Alex Stepanov gave a presentation at 

Adobe with this slide
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“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

30



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

31



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

32



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

33



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

34



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

35



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

36



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

37



© 2025 Adobe. All Rights  Reserved.

“By generic programming we mean the definition of algorithms 
and data structures at an abstract or generic level, thereby 

accomplishing many related programming tasks simultaneously. 
The central notion is that of generic algorithms, which are 
parameterized procedural schemata that are completely 

independent of the underlying data representation and are 
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

38



Programming with Generics
≠

Generic Programming



Metaprogramming
≠

Generic Programming
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Programming is Mathematics

▪ Refined Concept: a concept defined by adding requirements to an existing concept

▪ Monoid: a semigroup with an identity element

▪ Bidirectional Iterator: forward iterator with constant complexity decrement

▪ Refined Algorithm: An algorithm performing the same function as another but with lower complexity 
or higher efficiency on a refined concept

▪ Mathematics

▪ Axiom

▪ Algebraic Structure

▪ Model

▪ Theorems

▪ Function

▪ __________

▪ Generic Programming

▪ Semantic Requirements

▪ Concept

▪ Model

▪ Algorithms

▪ Regular Function

▪ Complexity
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Concepts

▪ A Concept is an algebraic structure formed of connected requirements

▪ Equality is a unique equivalence relation…

∀𝑎: 𝑎 = 𝑎 (reflexive)

𝑎 = 𝑏 ⟹ 𝑏 = 𝑎 (symmetric)

𝑎 = 𝑏 and 𝑏 = 𝑐 ⟹ 𝑎 = 𝑐 (transitive)

▪ …connected to copy and assignment:

𝑏 → 𝑎 ⟹ 𝑎 = 𝑏 (copies are equal)

𝑎 = 𝑏 = 𝑐,  𝑑 ≠ 𝑎, 𝑑 → 𝑎 ⟹ 𝑏 = 𝑐 (copies are disjoint)

▪ The concept regular is essential for equational and local reasoning
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Building a Repository of 
Algorithms

▪ Modeled after the IRMT

▪ A collection of fundamental algorithms 

and data structures presented in a 

common form.

▪ Proven implementations in a variety of 

languages

▪ Implementations selected for inclusion 

based on abstractness and efficiency
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Unfortunately, the IRMT doesn’t exist

▪ Building a cohesive foundation is hard.

▪ Examples:

▪ Euclid’s Elements (300 BCE)

▪ Principia Mathematica by Isaac Newton (1687)

▪ Formulario Mathematico by Giuseppe Peano (1894)

▪ Éléments de mathématique by Nicolas Bourbaki (1939)
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Computer Science foundations

▪ Example books:

▪ The Art of Computer Programming by Don Knuth (1968..)

▪ Communicating Sequential Processes by Tony Hoare (1978)

▪ Elements of Programming by Alex Stepanov & Paul McJones (2019)

▪ Libraries:

▪ Standard Template Library

▪ Boost Graph Library

▪ Ranges
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The Language Challenge

▪ Semantic constraints are not expressed (and unchecked)

▪ Tradeoffs

▪ Separate compilation makes refinement difficult (impacts efficiency and expressibility)

▪ Concept mechanisms are used for “implements” as opposed to “models”

▪ See concepts like “std::copy_constructible”, or the trait “std::ops::Sub”, or the protocol “Hashable”

▪ Confusion over the domain of operations

▪ A type models a concept if values of that type exist that satisfy the constraint

▪ operator < on double models strict-weak-ordering
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Current Design of Large Systems

▪ Networks of objects form incidental data structures

▪ Messaging among objects forms incidental algorithms

▪ Design Patterns assist in reasoning about these systems

▪ Local rules approximate correct algorithms and structures

▪ Iteratively refine until quality is good enough
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A “Generic Algorithm” for Building Systems

▪ Identify the components and how they connect and interrelate

▪ Avoid incidental data structures by packaging related objects, other than whole/part relationships, as 

parts of a whole

▪ The whole maintains the invariants of any relationships between the parts

▪ Avoid incidental algorithms by recasting as explicit algorithms

▪ Identify common structures and algorithms, and refactor them into generic components

▪ Repeat…



Question: Is generic 
programming sufficient to 
build software at scale?



Conjecture: All problems of 
scale become a network 
problem



Declarative Forms
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Declarative Forms
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Declarative Forms

▪ Describe components by their structure and constraints in a domain-specific language

▪ 4th generation 5th generation languages

▪ The DSLs should not strive to be general-purpose or Turing-complete

▪ But Turing completeness, or effective Turing completeness, is nearly impossible to avoid

▪ Examples:

▪ Lex and YACC (and BNF-based parser generators in general)

▪ SQL

▪ HTML (ignoring <script> tags)

▪ Type Systems and Schema Languages

▪ Spreadsheets
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A “Generic Algorithm” for Building Large Systems

▪ Apply the algorithm for building systems

▪ Identify the common rules governing related parts of components and their structure

▪ Choose a DSL that allows you to define the component by expressing the structure and constraints

▪ If a DSL doesn’t exist, develop one*

▪ Repeat

▪ *Currently hard



Rules Exist
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Property Models
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Imperative Solution to Mini Image Size
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Event Flow



Demo
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sheet mini_image_size {
 input:
    original_width       : 5 * 300;
    original_height      : 7 * 300;
 interface:
    constrain           : true;
    width_pixels        : original_width     <== round(width_pixels);
    height_pixels       : original_height    <== round(height_pixels);
    width_percent;
    height_percent;
 logic:
    relate {
        width_pixels    <== round(width_percent * original_width / 100);
        width_percent   <== width_pixels * 100 / original_width;
    }
    relate {
        height_pixels   <== round(height_percent * original_height / 100);
        height_percent  <== height_pixels * 100 / original_height;
    }
    when (constrain) relate {
        width_percent   <== height_percent;
        height_percent  <== width_percent;
    }
 output:
    result <== { height: height_pixels, width: width_pixels };
}
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A Declarative Form

sheet mini_image_size(size: (usize, usize)) {
  var constrain_aspect_ratio: bool = true
  var pixel_size: (usize, usize) = size
  var percent: (f64, f64)

maintains:
  pixel_size.0 == round(percent.0 * size.0 / 100.0)
  pixel_size.1 == round(percent.1 * size.1 / 100.0)

  when constrain_aspect_ratio {
 percent.0 == percent.1
  }
}
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Imperative Solution to Mini Image Size
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Structure of Mini Image Size
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Future of Software Development (2006 - restated)

▪ Extend the ideas of generic programming to more domains

▪ Extend generic programming to apply to runtime polymorphism

▪ Formally describe software behavior by expressing the structure and constraints of the system
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References for Property Models

▪ Property models

▪ Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint Systems (2016),

Foust G, Järvi J, Parent S

▪ Specializing Planners for Hierarchical Multi-way Dataflow Constraint Systems (2015), Järvi J, Foust G, Haveraaen M

▪ HotDrink A Library for Web User Interfaces (2013), Freeman J, Järvi J, Foust G

▪ Helping Programmers Help Users (2012), Freeman J, Järvi J, Kim W, Marcus M, Parent S
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Related Work

▪ Selections

▪ One Way to Select Many (2016), Jaakko Järvi, Sean Parent

▪ Collection models

▪ Containers for GUI Models (2024), 

Stokke, Knut Anders; Barash, Mikhail; Järvi, Jaakko; Stenholm, Elisabeth; Robbestad Gylterud, Håkon

▪ The Ultimate GUI Framework: Are We There Yet? (2023), Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

▪ A domain-specific language for structure manipulation in constraint system-based GUIs (2023),

Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

▪ Towards Reusable GUI Structures (2023), Stokke Knut Anders, Barash Mikhail, Järvi Jaakko
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Future of Software Development

▪ Continue to improve the generic programming support in languages

▪ Refinements

▪ Dependent concepts

▪ Law of exclusivity (follows from whole/part relationships and local reasoning)

▪ Minimize tradeoffs between efficiency and safety

▪ Create better foundational libraries by implementing fundamental concepts and algorithms

▪ Create libraries of embedded DSLs that interoperate

▪ Develop AI to reason about code so that it can continue the above
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