

Are We There Yet?

Sean Parent | Sr. Principal Scientist
Software Technology Lab

Image by Bruno Tornielli

Industry Developments

Adobe

2006 2025
Employees 6,000 30,000

Revenue S2.6B S22.0B

© 2025Adobe. All Rights Reserved.

BB Photoshop

2006 2025
Engineers 20 250
Quality Engineers 30 60
. macOS, Windows, Linux (server), iOS,
Platforms macOS, Windows iPad0S, Browser (WASM), ...
Shared Technology Groups

Process Waterfall, 18-24 month cycles Agile(ish)

© 2025Adobe. All Rights Reserved.

Analysts (Then)

“Organizations need to integrate security best practices, security
testing tools and security-focused processes into their software
development life cycle. Proper execution improves application
security, reduces overall costs, increases customer satisfaction
and yields a more-efficient SDLC.”

— Gartner Research, February 2006

“Microsoft has been slowly moving to a new development
process that will affect how partners and customers evaluate and
test its software... The new process should help Microsoft gain
more feedback earlier in the development cycle, but it won’t
necessarily help the company ship its products on time or with

fewer bugs.”

— Directions on Microsoft, March 2006

Why the Status Quo Will Fail (2006)

“I've assigned this problem [binary search] in courses at Bell Labs
and IBM. Professional programmers had a couple of hours to
convert the description into a programming language of their
choice; a high-level pseudo code was fine... Ninety percent of the
programmers found bugs in their programs (and | wasn’t always
convinced of the correctness of the code in which no bugs were

found).”

— Jon Bentley, Programming Pearls, 1986

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
int1=0;
intu=n-1;

while (true) {
if (I >u) return -1,

intm=(l+u)/2;
if (xIm]<v)l=m+1;

else if (x[m] == v) return m;
else /* (x[m]>Vv) */u=m-1;

Binary Search Solution (from 2006 talk)

int* lower_bound(int* first, int* last, int x) {
while (first !=last) {
int* middle = first + (last - first) / 2;
if (*middle < x)
first = middle + 1;
else
last = middle;

}

return first;

}

Question: If we can’t write binary search...

Jon Bentley’s solution is considerably more complicated (and slower)

Photoshop uses this problem as a take-home test for candidates

= More than 90% of candidates fail

Our experience teaching algorithms would indicate that more than 90% of engineers, regardless of
experience, cannot write this simple code

..then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

2025 Adobe. All Rights Reserved.

Analysts (Now)

“Almost all developers will increase their use of generative Al and
machine learning as code assistants and low-code/no-code tools
proliferate.”

— IDC Modern Software Development Survey, September 2024

“More than 55% of developers automatically generate 40% or
more of their code in their IDEs, highlighting the widespread use
of generative Al and machine learning in software development.”

— IDC Modern Software Development Survey, September 2024

Binary Search Solution (Copilot 2025)

int™ binary_search_insert_position(int* first, int* last, int x) {
while (first < last) {
int* mid = first + (last - first) / 2;
if (*mid < x) {
first = mid + 1;
} else {
last = mid;
}
}

return first;

}

= “Algorithm Naming: The function is essentially an adaptation of std::lower_bound().”

2
W/
>

J
L
W/
=

d
o
E

o
o
=

=
S

(&
Ly
o
>

)

All Bugs - 6/9/05

A\

- S0/02/8
- S8
- SOEDS L
- S0E L
- 50529
SO/ L LS
SO/BESS
SOt LS
- SOYOESY
=
- SE
rSleLE
- SO/GE
- SELIT
- SOYSIT
- SOEESL

- sol
A e

FFOALLAEL
Ty
FFO/ELLL
- FOAOEADOL

Fal T

- sl
r FVBLIG
r PG

L b rs

- FO/LB

L F voivers
7t vow

LR A
\VErovey

i rovoze

3000

2400

2000
1500
1000

sbng Jo Jaquinp

a00

L povgie

Week Ending

Found ——Closed ——Total Open ‘

A

12

2005 Adabe Systerne Incorporated. All Rights Resened.

Answer: lterative Refinement.

= Current programming methodologies lend themselves to iterative refinement

= We don’t solve problems; we approximate solutions

© 2025Adobe. All Rights Reserved.

How can we write Better Code?

= Study how to write correct software
= Write algorithms once, in a general form that can be reused
= Focus on fundamental algorithms

« Compose larger systems from proven components

© 2025Adobe. All Rights Reserved.

Generic Programming

Generic Programming

= In 2006, the idea of generic programming was
still young

= In 2002, Alex Stepanov gave a presentation at
Adobe with this slide

© 2025Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby
accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely
independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

— David Musser & Alex Stepanov

Programming with Generics
+

Generic Programming

Metaprogramming
+

Generic Programming

Programming is Mathematics

= Generic Programming « Mathematics
= Semantic Requirements = AXiom
= Concept = Algebraic Structure
= Model « Model
= Algorithms = Theorems
= Regular Function = Function
= Complexity

» Refined Concept: a concept defined by adding requirements to an existing concept
= Monoid: a semigroup with an identity element

= Bidirectional Iterator: forward iterator with constant complexity decrement

= Refined Algorithm: An algorithm performing the same function as another but with lower complexity
or higher efficiency on a refined concept

© 2025Adobe. All Rights Reserved.

Concepts

= A Concept is an algebraic structure formed of connected requirements

= Equality is a unique equivalence relation...
Va:a = a (reflexive)
a = b = b = a (symmetric)
a =band b = ¢ = a = c (transitive)

= ...connected to copy and assignment:
b - a = a = b (copies are equal)
a=b=c d+ ad— a= b = c(copies are disjoint)

= The concept regular is essential for equational and local reasoning

2025 Adobe. All Rights Reserved.

Building a Repository of
Algorithms

Modeled after the IRMT

A collection of fundamental algorithms
and data structures presented in a
common form.

Proven implementations in a variety of
languages

Implementations selected for inclusion
based on abstractness and efficiency

© 2025Adobe. All Rights Reserved.

Unfortunately, the IRMT doesn’t exist

= Building a cohesive foundation is hard.

= Examples:
» Euclid’s Elements (300 BCE)
» Principia Mathematica by Isaac Newton (1687)
» Formulario Mathematico by Giuseppe Peano (1894)

- Eléments de mathématique by Nicolas Bourbaki (1939)

© 2025Adobe. All Rights Reserved.

Computer Science foundations

= Example books:
» The Art of Computer Programming by Don Knuth (1968..)
= Communicating Sequential Processes by Tony Hoare (1978)

» Elements of Programming by Alex Stepanov & Paul Mclones (2019)

= Libraries:
= Standard Template Library
= Boost Graph Library

= Ranges

© 2025Adobe. All Rights Reserved.

The Language Challenge

» Semantic constraints are not expressed (and unchecked)

= Tradeoffs

» Separate compilation makes refinement difficult (impacts efficiency and expressibility)

= Concept mechanisms are used for “implements” as opposed to “models”

= See concepts like “std::copy_constructible”, or the trait “std::ops::Sub”, or the protocol “Hashable”

= Confusion over the domain of operations
= A type models a concept if values of that type exist that satisfy the constraint

= operator < on double models strict-weak-ordering

2025 Adobe. All Rights Reserved.

Current Design of Large Systems

Networks of objects form incidental data structures

Messaging among objects forms incidental algorithms

Design Patterns assist in reasoning about these systems

= Local rules approximate correct algorithms and structures

Iteratively refine until quality is good enough

2025 Adobe. All Rights Reserved.

A “Generic Algorithm” for Building Systems

= |dentify the components and how they connect and interrelate

= Avoid incidental data structures by packaging related objects, other than whole/part relationships, as
parts of a whole

= The whole maintains the invariants of any relationships between the parts

= Avoid incidental algorithms by recasting as explicit algorithms
= |dentify common structures and algorithms, and refactor them into generic components

= Repeat...

2025 Adobe. All Rights Reserved.

Question: Is generic
programming sufficient to
build software at scale?

Conjecture: All problems of
scale become a network
problem

Declarative Forms

Declarative Forms

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An altornative functinnal ctvle af nroaorammine ic

© 2025Adobe. All Rights Reserved.

Declarative Forms

= Describe components by their structure and constraints in a domain-specific language

= 4th generation 5t generation languages

= The DSLs should not strive to be general-purpose or Turing-complete

= But Turing completeness, or effective Turing completeness, is nearly impossible to avoid

= Examples:
» Lex and YACC (and BNF-based parser generators in general)
= SQL
« HTML (ignoring <script> tags)
= Type Systems and Schema Languages

= Spreadsheets

2025 Adobe. All Rights Reserved.

A “Generic Algorithm” for Building Large Systems

Apply the algorithm for building systems

Identify the common rules governing related parts of components and their structure

Choose a DSL that allows you to define the component by expressing the structure and constraints

= If a DSL doesn’t exist, develop one*

Repeat

*Currently hard

2025 Adobe. All Rights Reserved.

Rules Exist

Property Models

field with a formatter a
the £

ed forces

atter. */f

static double TextField unformattedDoublevalue(
id textrield
id formateer = [textrield formatter
| textricld setrormetter: nil 1;
double result = [textFisld doublsValue]:
textTield sstTormatter: formatter 1;
return result:

de but for integers. +/

statle double TextField unformattedIntvelue
id eewerield

id formatter = [textField formatter |;
| textPield setFormatter: nil |;
int result = [textPield intvalue |7
| textPield setFormstter: formatter];
return result)
Iy

/4 Betting a text field while it i
to set the text. Sa, we have teo

static void TextField setDoubleValueAndFormatter(
id textrield,
double valua,
WSFormatter *formatter) {

HODL wasBditing = [textrisld abortEditing i

7% 1f we'ra changing the forma
e dizplay updates

to

. then wa
make sure that cluding the edit

field. =/

Lf{ [textField formatter | 1= formatter } {
[textField setFormatter: formatter];
[textField sstDeubleValue: value - 1.0];
}

| textPield setDoubleValue: valus |7

Lf{ wasEditing
[

3 {
textPield selectText: ail |7

integer values. =/

static void Textrield setintValushndformatter(
id tewtri

int value,
FSFormatter *formatter) {
HOOT, wasBditing = [textField abortEditing 1;

7+ 1f we're changing the formatter
make sure thar the display uwpd
field. =/

en we WANt to
uding the edit

LI([textField formatter] != formatter } {
tEXLField setFormsttér; rormatter)i
[textPield setIntvalus: value — 1 |3
1

[textPield setIntValue: value |;

Lf wasEditing }
[textPield selectPess: ail |;

is the a e controller. »

“face Imagesirecemtroller @ NEDbest {
A heighrield

A widthPield

id censtrainProportionsBox_;

id usePercentagesBox_;

t NSNUMBEIFOIMALLer *piXelFoxmatter

IEoutlet NSHunberFormetter ?percentPormatier_
privace

inieialnidehpivels
initialneightPixels
int widehpixels ;
int helghtPixels_

double widthPercentags ;
double heightPercentage ;
BOOL censtrairProporticas ;
BOGL usePersertages

(woid) showwidth;
- (void) showeight;
- (void) showAll;
- (1HAction) heightAction:
(18Action) widthhction: (id)sender
- (iBActicn) constrainProportionsaction: (id)sender;
Bhction) uaePercentageshction: {id}jsemder;

d)sender

)

@implementat ion ImageSizeController

Update the wideh field. *

- (void) showwidel {
if{ usePercentages_) {
TextField setDoublevalusAndFormatter
widthField , widthPercentage
percestFormatter);

=
TextField setIntValuehndFormaster(
widthPield , widthPixals , pixslFormateer jr

* Update the © field. -

- (vaid] showHeight {
if{ usePercentages) {
TextField_setDoublevalueAndFormattex |
neightrield , heightpercentage_,
POrGENLESImALLOT)}

TextTield_setIntvalueAndFormatter (

heightrield , heightPixels_, pixelFormatter_)

/% Update wide height

- (void) showWidthbAndHeight |

[=elf shewdeighe 17

- (woid) shewall {
{ melf shownidthAndHeighs 1;
{ msePercentagesBox_ setdtate:
usePercentages_ ? NSOnState : NEOffBtate |;
I senstrainProporticnsBox_ setState:
cenatrainProportions_ 7 WeGnState : WsOffState

- (void) revertidthAndReight {
widihPixels_ = initialWidthPixels_;
widthPercentage_ = 100.0;

heightPixels_ = initialBeightPixels_;
heightSercenzage = 100.0;

[melf showdidthAndieighs];

n) vevert: (id) mender {
revertwidthandseight |;

Imperative Solution to Mini Image Size

displaying

ent

} elee
. hotgherisalo_
TextField unformattedIntValue(sender)3

for piuels as well in sase this forssd

- (IBRction) apply: (id) sender { [self heightPercentsgeFronixels |;
initialwidehPixels = widthPixels ; y
widthPercentage_ = 100,
iE(constrainfroportions | {
initialleightPixels = heightPixels ; widthPercentage = heightPercentage ;
beightPercentage = 100.0; [self widehPixelsFromPercentage |j

{ self showiideh 1;
[self shouidthAndieight |; y

ield actions ia to actual

gger the text

changes
- (iBAction) usePercentagesAction: (id) sender {
500L newUsePercentages sender state | - (void) comtrolTextDidchange:
if(newlsePercemtages != usePercentages_ | { . (88Kotification *) motification {
uzePercentages_ = newllssPercentane id sender = [motification object
I aelf showHidbhAndleisht 15 975 astion = [sender msbion 1;
¥ if(action) {
) [[sender target |
perfornBelector: action
withObject: sender
le an event fr s chee ¥

— (IBRetion) eenstralnPreportionsAstisn: (id) sender
BOOL newConstrainFroporticns =
| sender state] == nSonstate;
if{ newConstrainProporticns te constrainProporticns.)
constrainProporticns = aswConstrainPFroportioas;

if(newConstrainProportions) { KIB, but we aren't s
[self reversWidehAndBeight];
3 - (void) awskeFromNib {
3 initialWidehPixels = widehPixels = 400;
} initial¥eightFixels_ = heightPixels_ = 300;
widthFercentage_ =
heiybtPesceulags_ - f
* The following routines handle conversion between pixela constrainProportions_ = YEs;
and percentages for width and height usePercentages_ = N
[self showall 1;
- {veid) widthFixelsFromPercentage | }
widthPizela_ = {int)
floor (| initialwidehpixels_ *+ widthPercentage_
I 0+ 0.5

- (void) widthPercentageFronPixels |
widthPercentage_ =
widthPixels_ * 100.0 / initialWidehPixels ;

- (void) heightPixelsPromPercentage |
heightPixels = (int)
flosr(nitinlEeighteizels + hed
100.0 4 0.5)7

- (void) heightPercentageFrompixels {
Beightrercencage
heighteixels_ + 100.0 / initialéeighepixels_

a change to the width fi

- (TBAction) widthaction: (id) sender {
uaePercentages_) {
widthPercentage_
Textrisld_unformattedpoublevalue(sender);
[self widthPixeleFremPercentage

} else {
wigthPixels_
TextPield unformattedIntvalue(sender);
[self widthPercentageFronPixels):
i

if(constrainProportions) {
cightPerentage = widthPercentage ;
16 hedghtPivelsFromPescentage |;

clf showHeight |7

ange to the b

ion) heightaction:
usePercentages_) {
heightPercentage_ =

TextField_unformattedboublevalue(sander);
I s¢lf heishtPixelsFrompercentage 1:

4} sender {

© 2025Adobe. All Rights Reserved.

Event Flow

Demo

sheet mini_image_size {
input:
original_width : 5*300;
original_height :7* 300;

interface:
constrain s true;
width_pixels : original_width <==round(width_pixels);

height_pixels :original_height <==round(height_pixels);
width_percent;
height_percent;
logic:
relate {
width_pixels <==round(width_percent * original_width / 100);
width_percent <== width_pixels * 100 / original_width;
}
relate {
height_pixels <==round(height_percent * original_height / 100);
height_percent <== height_pixels * 100 / original_height;
}
when (constrain) relate {
width_percent <== height_percent;
height_percent <== width_percent;
}
output:
result <=={ height: height_pixels, width: width_pixels };
}

© 2025Adobe. All Rights Reserved.

A Declarative Form

sheet mini_image_size(size: (usize, usize)) {
var constrain_aspect_ratio: bool = true
var pixel_size: (usize, usize) = size
var percent: (f64, f64)

maintains:
pixel_size.0 == round(percent.0 * size.0 / 100.0)
pixel_size.1 == round(percent.1 * size.1 / 100.0)

when constrain_aspect_ratio {
percent.0 == percent.1

}
}

© 2025Adobe. All Rights Reserved.

field with a formatter a
the £

ed forces

atter. */f

static double TextField unformattedDoublevalue(
id textrield
id formateer = [textrield formatter
| textricld setrormetter: nil 1;
double result = [textFisld doublsValue]:
textTield sstTormatter: formatter 1;
return result:

de but for integers. +/

statle double TextField unformattedIntvelue
id eewerield

id formatter = [textField formatter |;
| textPield setFormatter: nil |;
int result = [textPield intvalue |7
| textPield setFormstter: formatter];
return result)
Iy

/4 Betting a text field while it i
to set the text. Sa, we have teo

static void TextField setDoubleValueAndFormatter(
id textrield,
double valua,
WSFormatter *formatter) {

HODL wasBditing = [textrisld abortEditing i

7% 1f we'ra changing the forma
e dizplay updates

to

. then wa
make sure that cluding the edit

field. =/

Lf{ [textField formatter | 1= formatter } {
[textField setFormatter: formatter];
[textField sstDeubleValue: value - 1.0];
}

| textPield setDoubleValue: valus |7

Lf{ wasEditing
[

3 {
textPield selectText: ail |7

integer values. =/

static void Textrield setintValushndformatter(
id tewtri

int value,
FSFormatter *formatter) {
HOOT, wasBditing = [textField abortEditing 1;

7+ 1f we're changing the formatter
make sure thar the display uwpd
field. =/

en we WANt to
uding the edit

LI([textField formatter] != formatter } {
tEXLField setFormsttér; rormatter)i
[textPield setIntvalus: value — 1 |3
1

[textPield setIntValue: value |;

Lf wasEditing }
[textPield selectPess: ail |;

is the a e controller. »

“face Imagesirecemtroller @ NEDbest {
A heighrield

A widthPield

id censtrainProportionsBox_;

id usePercentagesBox_;

t NSNUMBEIFOIMALLer *piXelFoxmatter

IEoutlet NSHunberFormetter ?percentPormatier_
privace

inieialnidehpivels
initialneightPixels
int widehpixels ;
int helghtPixels_

double widthPercentags ;
double heightPercentage ;
BOOL censtrairProporticas ;
BOGL usePersertages

(woid) showwidth;
- (void) showeight;
- (void) showAll;
- (1HAction) heightAction:
(18Action) widthhction: (id)sender
- (iBActicn) constrainProportionsaction: (id)sender;
Bhction) uaePercentageshction: {id}jsemder;

d)sender

)

@implementat ion ImageSizeController

Update the wideh field. *

- (void) showwidel {
if{ usePercentages_) {
TextField setDoublevalusAndFormatter
widthField , widthPercentage
percestFormatter);

=
TextField setIntValuehndFormaster(
widthPield , widthPixals , pixslFormateer jr

* Update the © field. -

- (vaid] showHeight {
if{ usePercentages) {
TextField_setDoublevalueAndFormattex |
neightrield , heightpercentage_,
POrGENLESImALLOT)}

TextTield_setIntvalueAndFormatter (

heightrield , heightPixels_, pixelFormatter_)

/% Update wide height

- (void) showWidthbAndHeight |

[=elf shewdeighe 17

- (woid) shewall {
{ melf shownidthAndHeighs 1;
{ msePercentagesBox_ setdtate:
usePercentages_ ? NSOnState : NEOffBtate |;
I senstrainProporticnsBox_ setState:
cenatrainProportions_ 7 WeGnState : WsOffState

- (void) revertidthAndReight {
widihPixels_ = initialWidthPixels_;
widthPercentage_ = 100.0;

heightPixels_ = initialBeightPixels_;
heightSercenzage = 100.0;

[melf showdidthAndieighs];

n) vevert: (id) mender {
revertwidthandseight |;

Imperative Solution to Mini Image Size

displaying

ent

} elee
. hotgherisalo_
TextField unformattedIntValue(sender)3

for piuels as well in sase this forssd

- (IBRction) apply: (id) sender { [self heightPercentsgeFronixels |;
initialwidehPixels = widthPixels ; y
widthPercentage_ = 100,
iE(constrainfroportions | {
initialleightPixels = heightPixels ; widthPercentage = heightPercentage ;
beightPercentage = 100.0; [self widehPixelsFromPercentage |j

{ self showiideh 1;
[self shouidthAndieight |; y

ield actions ia to actual

gger the text

changes
- (iBAction) usePercentagesAction: (id) sender {
500L newUsePercentages sender state | - (void) comtrolTextDidchange:
if(newlsePercemtages != usePercentages_ | { . (88Kotification *) motification {
uzePercentages_ = newllssPercentane id sender = [motification object
I aelf showHidbhAndleisht 15 975 astion = [sender msbion 1;
¥ if(action) {
) [[sender target |
perfornBelector: action
withObject: sender
le an event fr s chee ¥

— (IBRetion) eenstralnPreportionsAstisn: (id) sender
BOOL newConstrainFroporticns =
| sender state] == nSonstate;
if{ newConstrainProporticns te constrainProporticns.)
constrainProporticns = aswConstrainPFroportioas;

if(newConstrainProportions) { KIB, but we aren't s
[self reversWidehAndBeight];
3 - (void) awskeFromNib {
3 initialWidehPixels = widehPixels = 400;
} initial¥eightFixels_ = heightPixels_ = 300;
widthFercentage_ =
heiybtPesceulags_ - f
* The following routines handle conversion between pixela constrainProportions_ = YEs;
and percentages for width and height usePercentages_ = N
[self showall 1;
- {veid) widthFixelsFromPercentage | }
widthPizela_ = {int)
floor (| initialwidehpixels_ *+ widthPercentage_
I 0+ 0.5

- (void) widthPercentageFronPixels |
widthPercentage_ =
widthPixels_ * 100.0 / initialWidehPixels ;

- (void) heightPixelsPromPercentage |
heightPixels = (int)
flosr(nitinlEeighteizels + hed
100.0 4 0.5)7

- (void) heightPercentageFrompixels {
Beightrercencage
heighteixels_ + 100.0 / initialéeighepixels_

a change to the width fi

- (TBAction) widthaction: (id) sender {
uaePercentages_) {
widthPercentage_
Textrisld_unformattedpoublevalue(sender);
[self widthPixeleFremPercentage

} else {
wigthPixels_
TextPield unformattedIntvalue(sender);
[self widthPercentageFronPixels):
i

if(constrainProportions) {
cightPerentage = widthPercentage ;
16 hedghtPivelsFromPescentage |;

clf showHeight |7

ange to the b

ion) heightaction:
usePercentages_) {
heightPercentage_ =

TextField_unformattedboublevalue(sander);
I s¢lf heishtPixelsFrompercentage 1:

4} sender {

© 2025Adobe. All Rights Reserved.

Structure of Mini Image Size

width_pixels

original_width

width_percent

=

constrian

height_pixels

original_height

height_percent

© 2025Adobe. All Rights Reserved.

Future of Software Development (2006 - restated)

= Extend the ideas of generic programming to more domains
= Extend generic programming to apply to runtime polymorphism

= Formally describe software behavior by expressing the structure and constraints of the system

References for Property Models

= Property models

» Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint Systems (2016),
Foust G, Jarvi J, Parent S

» Specializing Planners for Hierarchical Multi-way Dataflow Constraint Systems (2015), Jarvi J, Foust G, Haveraaen M
» HotDrink A Library for Web User Interfaces (2013), Freeman J, Jarvi J, Foust G

» Helping Programmers Help Users (2012), Freeman J, Jarvi J, Kim W, Marcus M, Parent S

2025 Adobe. All Rights Reserved.

Related Work

= Selections

» One Way to Select Many (2016), Jaakko Jarvi, Sean Parent

= Collection models

» Containers for GUI Models (2024),
Stokke, Knut Anders; Barash, Mikhail; Jarvi, Jaakko; Stenholm, Elisabeth; Robbestad Gylterud, Hakon

= The Ultimate GUI Framework: Are We There Yet? (2023), Stokke Knut Anders, Barash Mikhail, Jarvi Jaakko

» A domain-specific language for structure manipulation in constraint system-based GUIs (2023),
Stokke Knut Anders, Barash Mikhail, Jarvi Jaakko

» Towards Reusable GUI Structures (2023), Stokke Knut Anders, Barash Mikhail, Jarvi Jaakko

2025 Adobe. All Rights Reserved.

Future of Software Development

= Continue to improve the generic programming support in languages
= Refinements
» Dependent concepts
» Law of exclusivity (follows from whole/part relationships and local reasoning)

= Minimize tradeoffs between efficiency and safety
= Create better foundational libraries by implementing fundamental concepts and algorithms
= Create libraries of embedded DSLs that interoperate

= Develop Al to reason about code so that it can continue the above

2025 Adobe. All Rights Reserved.

	Default Section
	Slide 1
	Slide 2: Are We There Yet?
	Slide 3: Industry Developments
	Slide 4: Adobe
	Slide 5: Photoshop
	Slide 6: Analysts (Then)
	Slide 8: Large Quote
	Slide 9: Large Quote
	Slide 10: Large Quote
	Slide 11: Jon Bentley’s Solution (translated to C++)
	Slide 12: Binary Search Solution (from 2006 talk)
	Slide 13: Question: If we can’t write binary search…
	Slide 14: Analysts (Now)
	Slide 15: Large Quote
	Slide 16: Large Quote
	Slide 17: Binary Search Solution (Copilot 2025)
	Slide 18: Closer Slide
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Answer: Iterative Refinement.
	Slide 27: How can we write Better Code?
	Slide 28: Generic Programming
	Slide 29: Generic Programming
	Slide 30

	Quote Build
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

	Library Repsitory
	Slide 39: Programming with Generics ≠ Generic Programming
	Slide 40: Metaprogramming ≠ Generic Programming
	Slide 41: Programming is Mathematics
	Slide 42: Concepts
	Slide 43: Building a Repository of Algorithms
	Slide 44: Unfortunately, the IRMT doesn’t exist
	Slide 45: Computer Science foundations
	Slide 46: The Language Challenge
	Slide 47: Current Design of Large Systems
	Slide 48: A “Generic Algorithm” for Building Systems
	Slide 49: Question: Is generic programming sufficient to build software at scale?
	Slide 50: Conjecture: All problems of scale become a network problem
	Slide 51: Declarative Forms
	Slide 52: Declarative Forms
	Slide 53: Declarative Forms
	Slide 54: A “Generic Algorithm” for Building Large Systems
	Slide 55: Rules Exist
	Slide 56: Property Models
	Slide 57: Imperative Solution to Mini Image Size
	Slide 58: Event Flow
	Slide 59: Demo
	Slide 60
	Slide 61: A Declarative Form
	Slide 62: Imperative Solution to Mini Image Size
	Slide 63: Structure of Mini Image Size
	Slide 64: Future of Software Development (2006 - restated)
	Slide 65: References for Property Models
	Slide 66: Related Work
	Slide 67: Future of Software Development
	Slide 68: Closer Slide

