

Are We There Yet?
Sean Parent |Sr. Principal Scientist

Software Technology Lab

Im
ag

e
by

 B
ru

n
o

To
rn

ie
lli

Industry Developments

© 2025 Adobe. All Rights Reserved.

Adobe

2006 2025

Employees 6,000 30,000

Revenue $2.6B $22.0B

© 2025 Adobe. All Rights Reserved.

Photoshop

2006 2025

Engineers 20 250

Quality Engineers 30 60

Platforms macOS, Windows
macOS, Windows, Linux (server), iOS,
iPadOS, Browser (WASM), …

Shared Technology Groups

Process Waterfall, 18-24 month cycles Agile(ish)

Analysts (Then)

© 2025 Adobe. All Rights Reserved.

“Organizations need to integrate security best practices, security
testing tools and security-focused processes into their software
development life cycle. Proper execution improves application
security, reduces overall costs, increases customer satisfaction
and yields a more-efficient SDLC.”

– Gartner Research, February 2006

© 2025 Adobe. All Rights Reserved.

“Microsoft has been slowly moving to a new development
process that will affect how partners and customers evaluate and
test its software... The new process should help Microsoft gain
more feedback earlier in the development cycle, but it won’t
necessarily help the company ship its products on time or with
fewer bugs.”

– Directions on Microsoft, March 2006

© 2025 Adobe. All Rights Reserved.

“I’ve assigned this problem [binary search] in courses at Bell Labs
and IBM. Professional programmers had a couple of hours to
convert the description into a programming language of their
choice; a high-level pseudo code was fine... Ninety percent of the
programmers found bugs in their programs (and I wasn’t always
convinced of the correctness of the code in which no bugs were
found).”

– Jon Bentley, Programming Pearls, 1986

Why the Status Quo Will Fail (2006)

© 2025 Adobe. All Rights Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

© 2025 Adobe. All Rights Reserved.

Binary Search Solution (from 2006 talk)

int* lower_bound(int* first, int* last, int x) {
 while (first != last) {
 int* middle = first + (last - first) / 2;
 if (*middle < x)
 first = middle + 1;
 else
 last = middle;
 }
 return first;
}

© 2025 Adobe. All Rights Reserved.

Question: If we can’t write binary search…

▪ Jon Bentley’s solution is considerably more complicated (and slower)

▪ Photoshop uses this problem as a take-home test for candidates

▪ More than 90% of candidates fail

▪ Our experience teaching algorithms would indicate that more than 90% of engineers, regardless of

experience, cannot write this simple code

▪ …then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

Analysts (Now)

© 2025 Adobe. All Rights Reserved.

“Almost all developers will increase their use of generative AI and
machine learning as code assistants and low-code/no-code tools
proliferate.”

– IDC Modern Software Development Survey, September 2024

© 2025 Adobe. All Rights Reserved.

“More than 55% of developers automatically generate 40% or
more of their code in their IDEs, highlighting the widespread use
of generative AI and machine learning in software development.”

– IDC Modern Software Development Survey, September 2024

© 2025 Adobe. All Rights Reserved.

Binary Search Solution (Copilot 2025)

int* binary_search_insert_position(int* first, int* last, int x) {
 while (first < last) {
 int* mid = first + (last - first) / 2;
 if (*mid < x) {
 first = mid + 1;
 } else {
 last = mid;
 }
 }
 return first;
}

▪ “Algorithm Naming: The function is essentially an adaptation of std::lower_bound().”

© 2025 Adobe. All Rights Reserved.

Answer: Iterative Refinement.

▪ Current programming methodologies lend themselves to iterative refinement

▪ We don’t solve problems; we approximate solutions

© 2025 Adobe. All Rights Reserved.

How can we write Better Code?

▪ Study how to write correct software

▪ Write algorithms once, in a general form that can be reused

▪ Focus on fundamental algorithms

▪ Compose larger systems from proven components

Generic Programming

© 2025 Adobe. All Rights Reserved.

Generic Programming

▪ In 2006, the idea of generic programming was

still young

▪ In 2002, Alex Stepanov gave a presentation at

Adobe with this slide

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

30

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

31

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

32

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

33

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

34

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

35

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

36

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

37

© 2025 Adobe. All Rights Reserved.

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

38

Programming with Generics
≠

Generic Programming

Metaprogramming
≠

Generic Programming

© 2025 Adobe. All Rights Reserved.

Programming is Mathematics

▪ Refined Concept: a concept defined by adding requirements to an existing concept

▪ Monoid: a semigroup with an identity element

▪ Bidirectional Iterator: forward iterator with constant complexity decrement

▪ Refined Algorithm: An algorithm performing the same function as another but with lower complexity
or higher efficiency on a refined concept

▪ Mathematics

▪ Axiom

▪ Algebraic Structure

▪ Model

▪ Theorems

▪ Function

▪ __________

▪ Generic Programming

▪ Semantic Requirements

▪ Concept

▪ Model

▪ Algorithms

▪ Regular Function

▪ Complexity

© 2025 Adobe. All Rights Reserved.

Concepts

▪ A Concept is an algebraic structure formed of connected requirements

▪ Equality is a unique equivalence relation…

∀𝑎: 𝑎 = 𝑎 (reflexive)

𝑎 = 𝑏 ⟹ 𝑏 = 𝑎 (symmetric)

𝑎 = 𝑏 and 𝑏 = 𝑐 ⟹ 𝑎 = 𝑐 (transitive)

▪ …connected to copy and assignment:

𝑏 → 𝑎 ⟹ 𝑎 = 𝑏 (copies are equal)

𝑎 = 𝑏 = 𝑐, 𝑑 ≠ 𝑎, 𝑑 → 𝑎 ⟹ 𝑏 = 𝑐 (copies are disjoint)

▪ The concept regular is essential for equational and local reasoning

© 2025 Adobe. All Rights Reserved.© 2025 Adobe. All Rights Reserved.

Building a Repository of
Algorithms

▪ Modeled after the IRMT

▪ A collection of fundamental algorithms

and data structures presented in a

common form.

▪ Proven implementations in a variety of

languages

▪ Implementations selected for inclusion

based on abstractness and efficiency

© 2025 Adobe. All Rights Reserved.

Unfortunately, the IRMT doesn’t exist

▪ Building a cohesive foundation is hard.

▪ Examples:

▪ Euclid’s Elements (300 BCE)

▪ Principia Mathematica by Isaac Newton (1687)

▪ Formulario Mathematico by Giuseppe Peano (1894)

▪ Éléments de mathématique by Nicolas Bourbaki (1939)

© 2025 Adobe. All Rights Reserved.

Computer Science foundations

▪ Example books:

▪ The Art of Computer Programming by Don Knuth (1968..)

▪ Communicating Sequential Processes by Tony Hoare (1978)

▪ Elements of Programming by Alex Stepanov & Paul McJones (2019)

▪ Libraries:

▪ Standard Template Library

▪ Boost Graph Library

▪ Ranges

© 2025 Adobe. All Rights Reserved.

The Language Challenge

▪ Semantic constraints are not expressed (and unchecked)

▪ Tradeoffs

▪ Separate compilation makes refinement difficult (impacts efficiency and expressibility)

▪ Concept mechanisms are used for “implements” as opposed to “models”

▪ See concepts like “std::copy_constructible”, or the trait “std::ops::Sub”, or the protocol “Hashable”

▪ Confusion over the domain of operations

▪ A type models a concept if values of that type exist that satisfy the constraint

▪ operator < on double models strict-weak-ordering

© 2025 Adobe. All Rights Reserved.

Current Design of Large Systems

▪ Networks of objects form incidental data structures

▪ Messaging among objects forms incidental algorithms

▪ Design Patterns assist in reasoning about these systems

▪ Local rules approximate correct algorithms and structures

▪ Iteratively refine until quality is good enough

© 2025 Adobe. All Rights Reserved.

A “Generic Algorithm” for Building Systems

▪ Identify the components and how they connect and interrelate

▪ Avoid incidental data structures by packaging related objects, other than whole/part relationships, as

parts of a whole

▪ The whole maintains the invariants of any relationships between the parts

▪ Avoid incidental algorithms by recasting as explicit algorithms

▪ Identify common structures and algorithms, and refactor them into generic components

▪ Repeat…

Question: Is generic
programming sufficient to
build software at scale?

Conjecture: All problems of
scale become a network
problem

Declarative Forms

© 2025 Adobe. All Rights Reserved.

Declarative Forms

© 2025 Adobe. All Rights Reserved.

Declarative Forms

▪ Describe components by their structure and constraints in a domain-specific language

▪ 4th generation 5th generation languages

▪ The DSLs should not strive to be general-purpose or Turing-complete

▪ But Turing completeness, or effective Turing completeness, is nearly impossible to avoid

▪ Examples:

▪ Lex and YACC (and BNF-based parser generators in general)

▪ SQL

▪ HTML (ignoring <script> tags)

▪ Type Systems and Schema Languages

▪ Spreadsheets

© 2025 Adobe. All Rights Reserved.

A “Generic Algorithm” for Building Large Systems

▪ Apply the algorithm for building systems

▪ Identify the common rules governing related parts of components and their structure

▪ Choose a DSL that allows you to define the component by expressing the structure and constraints

▪ If a DSL doesn’t exist, develop one*

▪ Repeat

▪ *Currently hard

Rules Exist

© 2025 Adobe. All Rights Reserved.

Property Models

© 2025 Adobe. All Rights Reserved.

Imperative Solution to Mini Image Size

© 2025 Adobe. All Rights Reserved.

Event Flow

Demo

© 2025 Adobe. All Rights Reserved.

sheet mini_image_size {
 input:
 original_width : 5 * 300;
 original_height : 7 * 300;
 interface:
 constrain : true;
 width_pixels : original_width <== round(width_pixels);
 height_pixels : original_height <== round(height_pixels);
 width_percent;
 height_percent;
 logic:
 relate {
 width_pixels <== round(width_percent * original_width / 100);
 width_percent <== width_pixels * 100 / original_width;
 }
 relate {
 height_pixels <== round(height_percent * original_height / 100);
 height_percent <== height_pixels * 100 / original_height;
 }
 when (constrain) relate {
 width_percent <== height_percent;
 height_percent <== width_percent;
 }
 output:
 result <== { height: height_pixels, width: width_pixels };
}

© 2025 Adobe. All Rights Reserved.

A Declarative Form

sheet mini_image_size(size: (usize, usize)) {
 var constrain_aspect_ratio: bool = true
 var pixel_size: (usize, usize) = size
 var percent: (f64, f64)

maintains:
 pixel_size.0 == round(percent.0 * size.0 / 100.0)
 pixel_size.1 == round(percent.1 * size.1 / 100.0)

 when constrain_aspect_ratio {
 percent.0 == percent.1
 }
}

© 2025 Adobe. All Rights Reserved.

Imperative Solution to Mini Image Size

© 2025 Adobe. All Rights Reserved.

Structure of Mini Image Size

© 2025 Adobe. All Rights Reserved.

Future of Software Development (2006 - restated)

▪ Extend the ideas of generic programming to more domains

▪ Extend generic programming to apply to runtime polymorphism

▪ Formally describe software behavior by expressing the structure and constraints of the system

© 2025 Adobe. All Rights Reserved.

References for Property Models

▪ Property models

▪ Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint Systems (2016),

Foust G, Järvi J, Parent S

▪ Specializing Planners for Hierarchical Multi-way Dataflow Constraint Systems (2015), Järvi J, Foust G, Haveraaen M

▪ HotDrink A Library for Web User Interfaces (2013), Freeman J, Järvi J, Foust G

▪ Helping Programmers Help Users (2012), Freeman J, Järvi J, Kim W, Marcus M, Parent S

© 2025 Adobe. All Rights Reserved.

Related Work

▪ Selections

▪ One Way to Select Many (2016), Jaakko Järvi, Sean Parent

▪ Collection models

▪ Containers for GUI Models (2024),

Stokke, Knut Anders; Barash, Mikhail; Järvi, Jaakko; Stenholm, Elisabeth; Robbestad Gylterud, Håkon

▪ The Ultimate GUI Framework: Are We There Yet? (2023), Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

▪ A domain-specific language for structure manipulation in constraint system-based GUIs (2023),

Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

▪ Towards Reusable GUI Structures (2023), Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

© 2025 Adobe. All Rights Reserved.

Future of Software Development

▪ Continue to improve the generic programming support in languages

▪ Refinements

▪ Dependent concepts

▪ Law of exclusivity (follows from whole/part relationships and local reasoning)

▪ Minimize tradeoffs between efficiency and safety

▪ Create better foundational libraries by implementing fundamental concepts and algorithms

▪ Create libraries of embedded DSLs that interoperate

▪ Develop AI to reason about code so that it can continue the above

	Default Section
	Slide 1
	Slide 2: Are We There Yet?
	Slide 3: Industry Developments
	Slide 4: Adobe
	Slide 5: Photoshop
	Slide 6: Analysts (Then)
	Slide 8: Large Quote
	Slide 9: Large Quote
	Slide 10: Large Quote
	Slide 11: Jon Bentley’s Solution (translated to C++)
	Slide 12: Binary Search Solution (from 2006 talk)
	Slide 13: Question: If we can’t write binary search…
	Slide 14: Analysts (Now)
	Slide 15: Large Quote
	Slide 16: Large Quote
	Slide 17: Binary Search Solution (Copilot 2025)
	Slide 18: Closer Slide
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Answer: Iterative Refinement.
	Slide 27: How can we write Better Code?
	Slide 28: Generic Programming
	Slide 29: Generic Programming
	Slide 30

	Quote Build
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

	Library Repsitory
	Slide 39: Programming with Generics ≠ Generic Programming
	Slide 40: Metaprogramming ≠ Generic Programming
	Slide 41: Programming is Mathematics
	Slide 42: Concepts
	Slide 43: Building a Repository of Algorithms
	Slide 44: Unfortunately, the IRMT doesn’t exist
	Slide 45: Computer Science foundations
	Slide 46: The Language Challenge
	Slide 47: Current Design of Large Systems
	Slide 48: A “Generic Algorithm” for Building Systems
	Slide 49: Question: Is generic programming sufficient to build software at scale?
	Slide 50: Conjecture: All problems of scale become a network problem
	Slide 51: Declarative Forms
	Slide 52: Declarative Forms
	Slide 53: Declarative Forms
	Slide 54: A “Generic Algorithm” for Building Large Systems
	Slide 55: Rules Exist
	Slide 56: Property Models
	Slide 57: Imperative Solution to Mini Image Size
	Slide 58: Event Flow
	Slide 59: Demo
	Slide 60
	Slide 61: A Declarative Form
	Slide 62: Imperative Solution to Mini Image Size
	Slide 63: Structure of Mini Image Size
	Slide 64: Future of Software Development (2006 - restated)
	Slide 65: References for Property Models
	Slide 66: Related Work
	Slide 67: Future of Software Development
	Slide 68: Closer Slide

