

1

At the first BoostCon in 2007, before it was
C++Now, I gave a keynote, "A Possible Future of
Software Development". I first gave the talk at
Texas A&M when Bjarne invited me to speak at an
industry affiliate event. I gave the talk several more
times including to IBM Research, the F-35 Joint
Strike Fighter software development team at
Lockheed Martin, internally at Adobe, and as a
Google Tech talk. The latter was recorded, and you
can find it on YouTube.

2

Are We There Yet?
Sean Parent | Sr. Principal Scientist
 Software Technology Lab

Im
ag

e
by

 B
ru

no
 T

or
ni

el
li

I’ve heard from people who saw that talk that this
had an influence on the development of the Elm
language, Prezi (the presentation software), and
the UI software for Tesla and WebOS (in Palm->HP-
>LG TVs).

Dave suggested I give the talk this year, since 18
years later, few of you have heard it (this was long
before "That's a Rotate"). How many here saw the
original or the YouTube video? This talk looks at
what has changed and is an updated version of A
Possible Future.

Two years after I gave the talk, the original Adobe
Software Technology Lab ended, and I landed at
Google working on ChromeOS. I returned to Adobe
and worked on a stream of products (Revel,
Lightroom Mobile, Lightroom Web, Photoshop
Mobile, and Photoshop Web).

And a few years ago, I reformed Adobe's Software
Technology Lab. One of our projects is to pick up
the work that led to this talk. Project Code Less...

2

The original audience for this talk was students,
and I started with some of my background. And
stats on Adobe.

3

Industry Developments

The company has grown a bit - 5x the number of
employees and nearly 8.5x revenue.

4

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Adobe

2006 2025

Employees 6,000 30,000

Revenue $2.6B $22.0B

Photoshop has 12.5x the number of engineers and
2x the number of QE (more on that).

Fun fact: Photoshop 3.0 shipped on Sun and SGI
Unix. But that was way back in 1994.

How we deal with shared technologies internally is
entirely different now than before. I couldn't come
up with any meaningful comparisons. We still have
a heavy reliance on shared tech. The core of
Photoshop itself is shipped as a library included in

5

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Photoshop

2006 2025

Engineers 20 250

Quality Engineers 30 60

Platforms macOS, Windows macOS, Windows, Linux (server), iOS,
iPadOS, Browser (WASM), …

Shared Technology Groups ✅ ✅

Process Waterfall, 18-24 month cycles Agile(ish)

many of our other products (and the same is true
of those products in Photoshop).

We didn’t follow a waterfall process out of
ignorance. Significant constraints, such as the lead
time for printing manuals and box art, and booking
manufacturing time for CDs, pushed the processes
to front-load features.

5

Let's look at what some analysts said in 2006 about
where software was headed.

6

Analysts (Then)

We consider security and memory safety a current
hot topic. Adobe acquired Macromedia (and Flash)
in 2005. You can look it up if you don’t know what
happened with Flash. Acrobat Reader has millions
of users, and we’ve announced that Reader will be
the default PDF viewer in Microsoft Edge starting
this September. Security, both client and server
side, remains a hot topic today.

8

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Large Quote

“Organizations need to integrate security best practices, security
testing tools and security-focused processes into their software
development life cycle. Proper execution improves application
security, reduces overall costs, increases customer satisfaction and
yields a more-efficient SDLC.”

– Gartner Research, February 2006

[10:00 – 80:00]

I found this quote entertaining – I don’t work at
Microsoft, so I can’t comment on how their
development practices are going, but my sense as
a user is they have improved (although I ran into
several bugs in PowerPoint just putting this
presentation together).

9

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Large Quote

“Microsoft has been slowly moving to a new development
process that will affect how partners and customers evaluate and
test its software... The new process should help Microsoft gain
more feedback earlier in the development cycle, but it won’t
necessarily help the company ship its products on time or with
fewer bugs.”

– Directions on Microsoft, March 2006

10

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Large Quote

“I’ve assigned this problem [binary search] in courses at Bell Labs
and IBM. Professional programmers had a couple of hours to
convert the description into a programming language of their
choice; a high-level pseudo code was fine... Ninety percent of the
programmers found bugs in their programs (and I wasn’t always
convinced of the correctness of the code in which no bugs were
found).”

– Jon Bentley, Programming Pearls, 1986

Why the Status Quo Will Fail (2006)

Jon Bentley's solution is considerably longer and
arguably incorrect.
1. Throws away information
2. Possible overflow
3. Extra comparison
4. Requires signed values

11

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

This would be a better solution to the problem.

12

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Binary Search Solution (from 2006 talk)

int* lower_bound(int* first, int* last, int x) {
 while (first != last) {
 int* middle = first + (last - first) / 2;
 if (*middle < x)
 first = middle + 1;
 else
 last = middle;
 }
 return first;
}

This slide is from my original talk and still holds as
generally true. I haven’t measured it, but I feel the
percentage of engineers who can write this code
has increased. We have moved beyond the “Java
Dark Ages,” where Java, Design Patterns, and
Object-Oriented Programming were taught at the
exclusion of machine architecture, algorithms, and
data structures. I credit programs like Google’s
Summer of Code and competitive coding contests
for the change.

13

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Question: If we can’t write binary search…

§ Jon Bentley’s solution is considerably more complicated (and slower)

§ Photoshop uses this problem as a take-home test for candidates

§ More than 90% of candidates fail

§ Our experience teaching algorithms would indicate that more than 90% of engineers, regardless of
experience, cannot write this simple code

§ …then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

However, some of my colleagues believe we are
entering a new dark age driven by AI and
JavaScript, creating a generation of developers who
don’t understand how the code they write works
(or doesn’t). I haven’t been involved with hiring
new grads in a while, so I have no firsthand
knowledge.

Before answering the question, let’s look at what
analysts say today.

13

Even though I expected this, I was still a bit
surprised…

14

Analysts (Now)

AI dominates the analysts' predictions – even
things like secDevOps have minimal mentions, and
no mention of memory safety.

15

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Large Quote

“Almost all developers will increase their use of generative AI and
machine learning as code assistants and low-code/no-code tools
proliferate.”

– IDC Modern Software Development Survey, September 2024

I use generative AI often when coding, but I still
find this static terrifying.

16

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Large Quote

“More than 55% of developers automatically generate 40% or
more of their code in their IDEs, highlighting the widespread use
of generative AI and machine learning in software development.”

– IDC Modern Software Development Survey, September 2024

This code is almost identical to mine. I would write
`while first does not equal last`, but this is fine. I’ve
tried this experiment a few times, starting with
GPT 2.5 (it failed). The code quality has gotten
surprisingly good, surprisingly fast.

The name of the algorithm was basically pulled
from the description of the problem. I asked how
the code could be improved, and it pointed out the
name, and that this is essential std::lower_bound()
– I consider calling std::lower_bound() an

17

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Binary Search Solution (Copilot 2025)

int* binary_search_insert_position(int* first, int* last, int x) {
 while (first < last) {
 int* mid = first + (last - first) / 2;
 if (*mid < x) {
 first = mid + 1;
 } else {
 last = mid;
 }
 }
 return first;
}

§ “Algorithm Naming: The function is essentially an adaptation of std::lower_bound().”

acceptable solution to the binary search problem.

17

[20:00 – 70:00]

The analysts are right, problem solved – that’s the
end of my talk… I think we have a little more time?
Let’s continue since we aren’t all out of a job yet.

18

Closer Slide

Fortunately (or unfortunately), I don’t believe AI
fixes everything, yet. Yet. Let’s look a little more at
how software is developed.

19

My ability to generate a Jira report that doesn’t
look like noise sucks.
This is a graph of issues (bugs) for a product for the
last 10 years.
The top red line is the running total of issues
created
The green line is the running total of issues
resolvedThe version lines are a new field, but they
give a sense of the release cadence in later
releases.

20

The bend in 2019 was a significant scale-up of the
team as the product became an “ecosystem” and
extended to more platforms

The blue line at the bottom shows the
accumulation of unresolved issues. This is the
more interesting bit – the bend in the curve on top
caused a bump and jitter on the bottom, but it has
normalized. For the last several years, there hasn’t
been a noticeable increase in unresolved bugs.

20

Here is the breakdown of how bugs are resolved
over the same period.

21

54% - At least more bugs are fixed than not?
In fairness, the % should be a little higher because
“Working as Designed” and “Duplicate” are not
bugs.
“Cannot Reproduce” is a little more problematic
and could indicate a need for better test coverage.

22

Won’t Fix: “Usually low priority bug, not worth the
effort, or no need to fix for a situation that's not
important anymore.”
Narrator voice: “At least they thought it was a low-
priority bug.”

23

Deferred: “Will reconsider at a future date”
(narrator voice: “They won’t”).

24

9% of all bugs reported remain unresolved.

25

Going back to the earlier question, we ship
software through a process of iterative refinement.

Who here feels like a good portion of their career is
recoding things others have written before, or
things you have written before? Why is AI good at
code? Because, as an industry, we repeat ourselves
a lot.

26

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Answer: Iterative Refinement.

§ Current programming methodologies lend themselves to iterative refinement

§ We don’t solve problems; we approximate solutions

[30:00 – 60:00]

All code is a liability. We need to focus on the
problem of writing less code (not writing bad code
faster).

27

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

How can we write Better Code?

§ Study how to write correct software

§ Write algorithms once, in a general form that can be reused

§ Focus on fundamental algorithms

§ Compose larger systems from proven components

Who here feels like they spend most of their time
writing and rewriting either code you’ve written
before or code someone has written?

28

Generic Programming

I’m in the right front corner of the audience for this
talk – this was the day when I first met Alex in
person.

By extension, Alex wasn’t referring to standard
library extensions, but things like the Boost Graph
Library (shipped in 2000). There are many more
extensions now, but certainly not as many as I
would hope for.

No language progress – Alex’s work had directly

29

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Generic Programming

§ In 2006, the idea of generic programming was
still young

§ In 2002, Alex Stepanov gave a presentation at
Adobe with this slide

influenced C++ Concepts, Rust Traits, and Swift
Protocols. None of these do better than (named)
duck conformance. The semantics are still
relegated to comments.

I believe STL and Generic Programming have
significantly impacted software engineering
throughout the industry, although I know Alex still
views it as a ”failure”.

29

I think it is worth taking a moment to look at the
original definition of generic programming from
1988 (before STL).

30

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

30

31

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

31

32

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

32

33

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

33

34

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

34

35

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

35

[40:00 – 50:00]

36

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

36

37

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

37

38

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

“By generic programming we mean the definition of algorithms
and data structures at an abstract or generic level, thereby

accomplishing many related programming tasks simultaneously.
The central notion is that of generic algorithms, which are
parameterized procedural schemata that are completely

independent of the underlying data representation and are
derived from concrete, efficient algorithms.”

 — David Musser & Alex Stepanov

38

Generic programming has little to nothing to do
with generics, or templates, or even traits, or
protocols.

39

Programming with Generics
≠

Generic Programming

And generic programming certainly has nothing to
do with metaprogramming. Metaprogramming and
templates are mechanisms used to approximate
generic programming.

40

Metaprogramming
≠

Generic Programming

See Alex’s books, Elements of Programming and
From Mathematics to Generic Programming.
Alex Stepanov envisioned a national or
international repository of proven, abstract, and
efficient algorithms. There have even been some
(mostly failed) attempts to start such a repository.

41

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Programming is Mathematics

§ Refined Concept: a concept defined by adding requirements to an existing concept
§ Monoid: a semigroup with an identity element
§ Bidirectional Iterator: forward iterator with constant complexity decrement

§ Refined Algorithm: An algorithm performing the same function as another but with lower
complexity or higher efficiency on a refined concept

§ Mathematics
§ Axiom

§ Algebraic Structure

§ Model

§ Theorems

§ Function

§ __________

§ Generic Programming
§ Semantic Requirements

§ Concept

§ Model

§ Algorithms

§ Regular Function

§ Complexity

Concepts (not the C++ language mechanism) are
central to generic programming. They are the
substrate upon which algorithms (theorems) are
defined.

The best we can do is require that an equality
operation exists and require in the documentation
that the semantics are upheld by the developer (or,
in limited cases, assert the semantics in the code).

Alex Stepanov envisioned a national or

42

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Concepts

§ A Concept is an algebraic structure formed of connected requirements

§ Equality is a unique equivalence relation…
∀𝑎: 𝑎 = 𝑎	(re)lexive)

𝑎 = 𝑏 ⟹ 𝑏 = 𝑎	(symmetric)
𝑎 = 𝑏	and	𝑏 = 𝑐 ⟹ 𝑎 = 𝑐	(transitive)

§ …connected to copy and assignment:
𝑏 → 𝑎 ⟹ 𝑎 = 𝑏	(copies	are	equal)

𝑎 = 𝑏 = 𝑐, 	𝑑 ≠ 𝑎,	𝑑 → 𝑎 ⟹ 𝑏 = 𝑐	(copies	are	disjoint)

§ The concept regular is essential for equational and local reasoning

international repository of proven, abstract, and
efficient algorithms. There have even been some
(mostly failed) attempts to start such a repository.

42

It should be easy to build such a repository – we
only have to follow the IRMT model.

Just like the IRMT, it has all the fundamental
theorems and formulas in standard form.

Just like the IRMT, it has both manual and
automated proofs of all the theorems.

Just like the IRMT, we should select theorems for
inclusion based on their general usefulness. These

43

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

© 2025 Adobe. All Rights Reserved.

Building a Repository of
Algorithms
§ Modeled after the IRMT

§ A collection of fundamental algorithms
and data structures presented in a
common form.

§ Proven implementations in a variety of
languages

§ Implementations selected for inclusion
based on abstractness and efficiency

are the theorems or algorithms upon which most
others are based.

43

We have excellent tools like Wolfram Alpha, and
you’ll find many attempts online. But nothing that
resembles a cohesive collection of theorems.

The closest we have are some of the great math
texts. These are not all – but what you find is they
amount to major works by single individuals or
small groups.

44

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Unfortunately, the IRMT doesn’t exist

§ Building a cohesive foundation is hard.

§ Examples:

§ Euclid’s Elements (300 BCE)

§ Principia Mathematica by Isaac Newton (1687)

§ Formulario Mathematico by Giuseppe Peano (1894)

§ Éléments de mathématique by Nicolas Bourbaki (1939)

[40:00 – 50:00]

Discovering requirements of algorithms, the
concepts they form, and the useful models of
those concepts, then organizing those into a
cohesive whole that can be built on is _hard_.
Packaging those works into usable and proven
code, and then maintaining that code in an
evolving environment, is a significant effort.

As professional developers, we have a moral

45

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Computer Science foundations

§ Example books:
§ The Art of Computer Programming by Don Knuth (1968..)

§ Communicating Sequential Processes by Tony Hoare (1978)

§ Elements of Programming by Alex Stepanov & Paul McJones (2019)

§ Libraries:

§ Standard Template Library

§ Boost Graph Library

§ Ranges

obligation to contribute to standardization, to open
source, and to publish. We have faith that
someone will come along to collect and distill what
proves to be of value into the cohesive whole. The
algorithms in these works were not, in large part,
the invention of the authors. They collected and
categorized, built on the work of others, and
sometimes were able to add some additional
insight.

45

Since we cannot express semantic constraints, we
associate semantics with the names of operations.
And often overload the meaning of a given name
for different types or different contexts.

We cannot define the meaning of copy or hashable
without equality. Both copy and hashable are
inherent properties of types. We cannot define
subtraction without addition and an additive
identity. Of course maybe we are using minus to
mean something other than subtraction, but then

46

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

The Language Challenge

§ Semantic constraints are not expressed (and unchecked)

§ Tradeoffs

§ Separate compilation makes refinement difficult (impacts efficiency and expressibility)

§ Concept mechanisms are used for “implements” as opposed to “models”

§ See concepts like “std::copy_constructible”, or the trait “std::ops::Sub”, or the protocol “Hashable”

§ Confusion over the domain of operations
§ A type models a concept if values of that type exist that satisfy the constraint

§ operator < on double models strict-weak-ordering

the trait “std::ops::Sub” has no meaning other than
“implements minus”.

A type may model a concept even if some of the
operations for the concept are not implemented. It
follows from the definition of a type, the
representation of a set of values in memory, that
all types are regular. Whether or not the
operations on a regular type are implemented or
implementable.

46

This is a slide from A Possible Future. Although I
think the landscape has somewhat improved,
especially in the web space (there is also a lot of
garbage in the web space), unfortunately this is
still the dominant way large systems are built.

47

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Current Design of Large Systems

§ Networks of objects form incidental data structures

§ Messaging among objects forms incidental algorithms

§ Design Patterns assist in reasoning about these systems

§ Local rules approximate correct algorithms and structures

§ Iteratively refine until quality is good enough

An incidental data structure is formed by
relationships outside of a containing class (usually
due to shared-pointer or other forms of reference
semantics). Pointers should not appear in class
interfaces.

An incidental algorithm could be a raw loop or an
algorithm constructed by messages sent through a
structure – separate forms of iteration from the
structure.

48

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

A “Generic Algorithm” for Building Systems

§ Identify the components and how they connect and interrelate

§ Avoid incidental data structures by packaging related objects, other than whole/part relationships, as
parts of a whole

§ The whole maintains the invariants of any relationships between the parts

§ Avoid incidental algorithms by recasting as explicit algorithms

§ Identify common structures and algorithms, and refactor them into generic components

§ Repeat…

Why repeat? New relationships will happen. Code
is promiscuous.

If you want to be a 10x developer, build libraries of
reusable components. Consider STL - the work of
Alex and Meng and they impact – they are 1Mx
developers. But even at much smaller scale a good
library can have significant impact on your
company and, perhaps on the industry.

48

Is this enough?

49

Question: Is generic
programming sufficient to
build software at scale?

A “network problem” is the problem of
establishing and enforcing a set of local rules
between related components that guarantee a
global behavior.
At scale, the relationships between parts of a
complex system become increasingly difficult to
reason about.

Dave once explained to be that bigger is different.

Scale may mean the number of components or the

50

Conjecture: All problems of
scale become a network
problem

number of relationships.
The number of possible computation paths
through related elements is bounded by `choose`
and grows exponentially.

50

This brings us to what I call declarative forms.

51

Declarative Forms

The idea of a “declarative form” is rooted in what
John Backus referred to as “functional or
combining forms” of which he identified 5, very
simple ones:

1. Composition
2. Construction
3. Conditioning
4. Iteration
5. Recursion

52

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Declarative Forms

Alex Stepanov recognized these as theories and
realized there are not few, but infinitely many.

Similarly, declarative forms are theories. They are
patterns of structures and constraints that appear
in many contexts. A few are fundamental (I believe
a number of those are still undiscovered).

52

4th generation languages are domain-specific
languages; 5th generation languages are languages
where you operate by specifying the problem, not
the algorithms to solve it. You specify the “what”,
not the “how”. Prolog is the canonical 5th-
generation language. However, general-purpose
5th-generation languages are difficult to use
effectively.

53

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Declarative Forms

§ Describe components by their structure and constraints in a domain-specific language
§ 4th generation 5th generation languages

§ The DSLs should not strive to be general-purpose or Turing-complete
§ But Turing completeness, or effective Turing completeness, is nearly impossible to avoid

§ Examples:

§ Lex and YACC (and BNF-based parser generators in general)

§ SQL

§ HTML (ignoring <script> tags)

§ Type Systems and Schema Languages

§ Spreadsheets

[60:00 – 30:00]

We can extend our previous process to large
system.

54

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

A “Generic Algorithm” for Building Large Systems

§ Apply the algorithm for building systems

§ Identify the common rules governing related parts of components and their structure

§ Choose a DSL that allows you to define the component by expressing the structure and constraints

§ If a DSL doesn’t exist, develop one*

§ Repeat

§ *Currently hard

This algorithm works because rules exist.

Software development is a process of discovery,
not invention.

The laws of mathematics and physics govern our
systems. If a problem and solution appear unique,
required for a specific case, they are probably
wrong. Writing a “new algorithm”, or a “new
structure”, or defining a “new concept” should set
off red-flags. It is probably time to do some

55

Rules Exist

research and read some papers.

Engineering is about finding the best solution given
a set of constraints, of which the laws are always a
part of the constraint set. But we also add time to
develop, the number of developers, the skills of
the developers, the platform(s) upon which the
solution must run, the required performance and
features, etc…

55

Let’s take a look at an example. This is a greatly
simplified version of a dialog that lets the user
resize an image. They can specify the width or
height in pixels or percent and toggle constraining
proportions—pretty simple stuff.

I asked Mark Hamburg to code this dialog. Mark
was the Photoshop lead in the early days and is the
creator of Lightroom. He’s a brilliant engineer and
Adobe Fellow.

56

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Property Models

He could use the framework of his choice, and I
wasn’t interested in the appearance, but the
behavior.

56

This code is Obj-C using Apple’s AppKit. This is
just the code from what Apple calls the
“controller” logic. i.e., the behavior. The grey area
loosely represents the code to enforce the
constraints between the values in this dialog. The
rest of the code is event-handling logic to drive the
constraints.

Similar code is about 30% of the Adobe (client-
side) codebases.

57

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Imperative Solution to Mini Image Size

If you diagram the event flow, it would look
something like this – this includes handling script
playback, which I don’t believe Mark implemented.

58

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Event Flow

[65:00 – 20:00
Demo mini-image-size and also full image-size

59

Demo

[70:00 – 15:00]
This is the property model description for the mini-
image size problem. Each `relate` clause is a
constraint with a set of constraint satisfaction
functions. The first two are two-way multiplicative
relationships (the original value is pinned) and the
last one is a conditional implication. Property
models support any n-to-m relationship.

60

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

sheet mini_image_size {
 input:
 original_width : 5 * 300;
 original_height : 7 * 300;
 interface:
 constrain : true;
 width_pixels : original_width <== round(width_pixels);
 height_pixels : original_height <== round(height_pixels);
 width_percent;
 height_percent;
 logic:
 relate {
 width_pixels <== round(width_percent * original_width / 100);
 width_percent <== width_pixels * 100 / original_width;
 }
 relate {
 height_pixels <== round(height_percent * original_height / 100);
 height_percent <== height_pixels * 100 / original_height;
 }
 when (constrain) relate {
 width_percent <== height_percent;
 height_percent <== width_percent;
 }
 output:
 result <== { height: height_pixels, width: width_pixels };
}

This is where we would like to get to, at least in a
self-contained form. We want sheets to compose;
dependent unit conversion is a common building
block.

This is a single dependent unit conversion plus a
single optional constraint. That’s it.

About 85% of the code could be replaced by small
declarative descriptions. Combined with generic
programming, there is a potential two orders of

61

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

A Declarative Form

sheet mini_image_size(size: (usize, usize)) {
 var constrain_aspect_ratio: bool = true
 var pixel_size: (usize, usize) = size
 var percent: (f64, f64)

maintains:
 pixel_size.0 == round(percent.0 * size.0 / 100.0)
 pixel_size.1 == round(percent.1 * size.1 / 100.0)

 when constrain_aspect_ratio {
 percent.0 == percent.1
 }
}

magnitude reduction in the code needed to
describe our products and we would see a greater
than two orders of magnitude reduction in defects.

[If a question arises about divide by zero…] If
`size` is 0, `percent` becomes a “don’t care” and
the control is disabled, showing the prior (empty)
value. This secondary pass has not been
implemented in the current work.

Which do you think is more likely to contain a bug…

61

62

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Imperative Solution to Mini Image Size

This is how the constraints are structured. I
mentioned disabling controls in the demo. The
rules for when a value-input in the UI is disabled is
when it is a “don’t care” (it doesn’t contribute to
the result under the current constraints) or when
it’s value is implied and no contra-positive is
expressed. All the information governing the UI
behavior is in the relationships.

63

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Structure of Mini Image Size

This was my final slide in the old talk.
There has been significant progress on the first two
points
There has been some progress on the latter point,
especially in web front-end development

64

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Future of Software Development (2006 - restated)

§ Extend the ideas of generic programming to more domains

§ Extend generic programming to apply to runtime polymorphism

§ Formally describe software behavior by expressing the structure and constraints of the system

Although I haven’t been working directly on
property models some work has continued. Jaakko
Järvi and I published some additional papers and
he and his students pushed the tech forward
developing additional solvers in JavaScript and
Rust.

65

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

References for Property Models

§ Property models
§ Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint Systems (2016),

Foust G, Järvi J, Parent S

§ Specializing Planners for Hierarchical Multi-way Dataflow Constraint Systems (2015), Järvi J, Foust G, Haveraaen M

§ HotDrink A Library for Web User Interfaces (2013), Freeman J, Järvi J, Foust G

§ Helping Programmers Help Users (2012), Freeman J, Järvi J, Kim W, Marcus M, Parent S

In 2016 Jaakko spent his sabbatical at Adobe, our
plan was to work on extending the ideas of
property models to collections. We get stuck on
how to describe how to create a selection within a
collection, and ended up developing a calculus for
this and writing a paper. If you do anything with
user interfaces it is worth reading.

Recently Jaakko has picked up the collection model
work again and has published several papers. I
didn’t know one of his recent ones is titled “are we

66

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Related Work

§ Selections
§ One Way to Select Many (2016), Jaakko Järvi, Sean Parent

§ Collection models
§ Containers for GUI Models (2024),

Stokke, Knut Anders; Barash, Mikhail; Järvi, Jaakko; Stenholm, Elisabeth; Robbestad Gylterud, Håkon

§ The Ultimate GUI Framework: Are We There Yet? (2023), Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

§ A domain-specific language for structure manipulation in constraint system-based GUIs (2023),
Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

§ Towards Reusable GUI Structures (2023), Stokke Knut Anders, Barash Mikhail, Järvi Jaakko

there yet?” before preparing this talk!

66

Foundational libraries should be proven correct.
Interoperate with the imperative language and
with each other

Demis Hassabis, the head of Google’s
DeepMind, estimates we will reach AGI in
about 5 years. My back-of-the-envelope
projection says we will match human
intelligence capabilities (number of neurons,
speed, power consumption) in 20-40 years. We

67

© 2025 Adobe. All Rights Reserved.

1/4 2/4 3/42/31/3Turn on Guides to see the custom grid.
Mac: Control-option-command-G
Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

1/4

2/4

3/4

HEADER

FOOTER

LEFT MARGIN RIGHT MARGIN

Future of Software Development

§ Continue to improve the generic programming support in languages
§ Refinements

§ Dependent concepts

§ Law of exclusivity (follows from whole/part relationships and local reasoning)

§ Minimize tradeoffs between efficiency and safety

§ Create better foundational libraries by implementing fundamental concepts and algorithms

§ Create libraries of embedded DSLs that interoperate

§ Develop AI to reason about code so that it can continue the above

don’t yet know if intelligence scales or how to
ensure our intelligent systems are “sane”. I
wouldn’t worry about AI putting you out of a
job; I would worry about AI putting everyone
out of a job.

AI won’t code in any existing language when it
takes our jobs. A reasoning AI will develop a
better language that is likely not human-
readable.

But if all you do is repeatedly rewrite some
approximation of correct code, AI will take your
job soon.

On that upbeat note – I hope you will all do
your part to help create the future.

67

[80:00 – 10:00]
Questions?

68

Closer Slide

