
Local Reasoning in Any Language

Sean Parent | Sr. Principal Scientist
Software Technology Lab

C++

© 2024 Adobe. All Rights Reserved.

Some Links

▪ https://developer.adobe.com/cpp/

▪ https://sean-parent.stlab.cc/papers-and-presentations/

▪ https://www.hylo-lang.org/

2

https://developer.adobe.com/cpp/
https://sean-parent.stlab.cc/papers-and-presentations/
https://www.hylo-lang.org/

Lokalt Resonnement på Alle Språk

Sean Parent | Sr. Principal Scientist
Software Technology Lab

i C++

© 2024 Adobe. All Rights Reserved.

Network of Object

4

© 2024 Adobe. All Rights Reserved.

Network of Object

5

© 2024 Adobe. All Rights Reserved.

Software Crisis

▪ OOP was supposed to solve the software crisis

▪ Wikipedia lists 17 major failed software projects totaling billions of dollars in losses since 1980

6

List of failed and overbudget custom software projects. (2024, August 28). In Wikipedia.

https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects

© 2024 Adobe. All Rights Reserved.

Failed Software Projects

7

© 2024 Adobe. All Rights Reserved.

Software Crisis

▪ In all cases, mismanagement and development processes are blamed for the failures

▪ Software practice, available languages, libraries, tools, and fundamental algorithms and types are
ignored

8

List of failed and overbudget custom software projects. (2024, August 28). In Wikipedia.

https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects

Why Software Projects Fail

© 2024 Adobe. All Rights Reserved.

Why Software Projects Fail

"The greatest limitation in writing software is our ability to understand the
systems we are creating."

– A Philosophy of Software Design, John Osterhaut

10

© 2024 Adobe. All Rights Reserved.

Local Reasoning

▪ Local Reasoning is the ability to reason about a defined unit of code and verify its correctness
without understanding all the contexts in which it is used or the implementations upon which it
relies.

▪ The two units of code this talk is concerned with are:

▪ Functions

▪ Classes

▪ The API is the key to local reasoning

11

© 2024 Adobe. All Rights Reserved.

Terminology

▪ Local Reasoning is concerned with both sides of an API

▪ The client code is the code calling a function or holding an instance of a class

▪ The implementor code is the implementation of a function or class

12

© 2024 Adobe. All Rights Reserved.

Functions

void f();

13

© 2024 Adobe. All Rights Reserved.

Functions

// Does nothing.

void f();

14

© 2024 Adobe. All Rights Reserved.

Functions

// Does nothing.

void f() { }

15

© 2024 Adobe. All Rights Reserved.

Functions

// Returns the successor of `x`.

int f(int x) { return x + 1; }

16

© 2024 Adobe. All Rights Reserved.

Functions

// Returns the successor of `x`.
// Precondition: `x < INT_MAX`.

int f(int x) { return x + 1; }

17

Function Arguments

© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by `1`.
// Precondition: `x < INT_MAX`.

void a(int& x) { x += 1; }

19

© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by `1`
// Precondition: `x < INT_MAX`.
// Precondition: no other thread of execution is accessing `x`
// during this operation.

void a(int& x) { x += 1; }

20

© 2024 Adobe. All Rights Reserved.

General Preconditions:

▪ Arguments passed to a function by non-const reference cannot be accessed by other threads
during the operation

▪ Arguments passed to a function by const reference cannot be written by another thread during the
operation

▪ Unless otherwise specified

21

© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by `1`.
// Precondition: `x < INT_MAX`.

void a(int& x) { x += 1; }

22

© 2024 Adobe. All Rights Reserved.

Why Mutation?

▪ Mutation is space efficient

▪ Mutation may be:

▪ more performant.

▪ simpler to reason about.

23

© 2024 Adobe. All Rights Reserved.

Transformations and Actions

▪ A transformation is a regular unary function.

▪ Changing the state of an object by applying a transformation to it defines an action on the object.

x = f(x);

24

© 2024 Adobe. All Rights Reserved.

Transformations and Actions

There is a duality between transformations and the corresponding actions: An
action is defined in terms of a transformation, and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

– Elements of Programming, Section 2.5

25

© 2024 Adobe. All Rights Reserved.

Argument Passing

▪ let arguments

▪ const T&

▪ inout arguments

▪ T&

▪ sink arguments

▪ T&&, use a constraint when T is deduced

template <class T>
void f(T&&) requires std::is_rvalue_reference_v<T&&>;

26

© 2024 Adobe. All Rights Reserved.

Argument Qualifiers

▪ let arguments

▪ Postcondition: The argument is not modified

▪ inout arguments

▪ Postcondition: The argument may be modified

▪ sink arguments

▪ Postcondition: The argument is (assumed to be) consumed

▪ The client can subsequently assign to the argument, or destruct it.

27

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of `x` by `n`
// Precondition: `(x + n) < INT_MAX`

void offset(int& x, const int& n) {
 x += n;
}

▪ What if this is called as:

int x{2};
offset(x, x);

println("{}", x);

4

28

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of `x` by `n`
// Precondition: `(x + n) < INT_MAX`

void offset(int& x, const int& n) {
 for (int i = 0; i != n; ++x) { }
}

▪ What will this print?

int x{2};
offset(x, x);

println("{}", x);

29

© 2024 Adobe. All Rights Reserved.

A more complex action

vector a{ 0, 1, 1, 0 };

erase(a, a[0]);

println("{}", a);

▪ What will this print?

[1, 0]

– https://godbolt.org/z/qM8Teos5h

30

https://godbolt.org/z/qM8Teos5h

© 2024 Adobe. All Rights Reserved.

Invalid References and References to Uninitialized Objects

vector<int> a{a};

terminate called after throwing an instance of 'std::bad_alloc'
 what(): std::bad_alloc
Program terminated with signal: SIGSEGV

https://godbolt.org/z/6zqM8neax

31

https://godbolt.org/z/6zqM8neax

© 2024 Adobe. All Rights Reserved.32

© 2024 Adobe. All Rights Reserved.

General Preconditions:

▪ Referenced objects must be within the objects lifetime

▪ inout and sink arguments cannot be accessed except directly by the implementation for the
duration of the call

▪ let arguments passed by reference cannot be mutated for the duration of the call

▪ Unless otherwise specified

33

© 2024 Adobe. All Rights Reserved.

Swift Law of Exclusivity

To achieve memory safety, Swift requires exclusive access to a variable in order
to modify that variable. In essence, a variable cannot be accessed via a different

name for the duration in which the same variable is being modified as an
inout argument or as self within a mutating method.

– Swift 5 Exclusivity Enforcement

34

https://www.swift.org/blog/swift-5-exclusivity/

© 2024 Adobe. All Rights Reserved.

Rust Borrowing

Mutable references have one big restriction: if you have a mutable reference to
a value, you can have no other references to that value.

– The Rust Programming Language: References and Borrowing

35

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

© 2024 Adobe. All Rights Reserved.

The Law of Exclusivity Applies to C++

▪ Upholding it is left as an execise for the developer

36

Projections

© 2024 Adobe. All Rights Reserved.

Function Results

// Returns the successor of `x`.
// Precondition: `x < INT_MAX`

int f(int x) { return x + 1; }

38

© 2024 Adobe. All Rights Reserved.

Return-by-reference

vector a{0, 1, 2, 3};
a.back() = 42;

println("{}", a);

[0, 1, 2, 42]

39

© 2024 Adobe. All Rights Reserved.

Projection Qualifiers

▪ Projections qualifiers mirror argument qualifiers

▪ Mutable (T&) projections allows the projected objects to be modified

▪ Constant (const T&) projections do not allow the projected object to be modified

▪ Consumable (T&&) projections allow the projected objects to be consumed

40

© 2024 Adobe. All Rights Reserved.

Projection Qualifiers

▪ Returning consumable projections are uncommon

▪ Usually return by-value is used but consumables may be more efficient when extracting a value
from an rvalue:

T&& extract() &&;

▪ Mutable projections may also be consumed but require an additional operation to restore
invariants on the owning object. i.e.

auto e{std::move(a.back());}
a.pop_back(); // erase the moved-from object

41

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection.

vector a{0};
int& p{a[0]}; // p is a projection
a.push_back(1); // p is invalidated

42

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or through
another non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

▪ The lifetime of the object they are projected from ends

int& p{vector{0}[0]}; // p is invalidated right after creation!

43

vector a{0, 1, 2, 3};
const e& = a.back();
a[2] = 42; // e is not invalidated

© 2024 Adobe. All Rights Reserved.

Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 1); // Invalid - overlapping

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 2); // OK - not overlapping

44

Objects

© 2024 Adobe. All Rights Reserved.

Objects

void f(shared_ptr<widget> p);

▪ What is the type of the argument for f()?

▪ To understand f() we need to understand the extent p

46

© 2024 Adobe. All Rights Reserved.

Equational Reasoning

▪ Equational reasoning is proving that expressions are equal by substituting equals for equals.

▪ Equational reasoning explains how code works and is a component part of larger proofs.

▪ To know if two values are equal, we need to know the extent of the values.

47

© 2024 Adobe. All Rights Reserved.

Equality

▪ Equality is an equivalence relation (reflexive, symmetric, and transitive)

▪ Equality connects to copy (equal and disjoint)

48

© 2024 Adobe. All Rights Reserved.

Transformations and Actions

There is a duality between transformations and the corresponding actions: An
action is defined in terms of a transformation, and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

– Elements of Programming, Section 2.5

49

© 2024 Adobe. All Rights Reserved.

Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity,
disjointness, and ownership

vector a{ 0, 1, 2, 3 };

struct {
 string name{ "John" };
 int id{0}
} b;

50

© 2024 Adobe. All Rights Reserved.

Objects

void f(widget& p);

▪ This should only modify an instance of widget

▪ It should be possible to express this as:

widget a(widget&& p);

51

© 2024 Adobe. All Rights Reserved.

Objects, Copies, and Argument Independence

▪ Objects used as arguments must be independent under mutation to uphold the Law of Exclusivity.

▪ Copies are equal and logically disjoint.

52

© 2024 Adobe. All Rights Reserved.

Achieving Independence

▪ No mutation

▪ No sharing

▪ Copy-on-write (no mutation unless not shared)

53

© 2024 Adobe. All Rights Reserved.

Extending Independence with Mutation

▪ A mutable object may extend permission for mutation to its parts through projections

▪ So long as those projections do not overlap

54

© 2024 Adobe. All Rights Reserved.

whole/part examples

class whole {
 part _part;
public:
 whole() = delete;
 explicit whole(state s) : _part{s} { }

 explicit whole(const whole&) = default;
 whole(whole&&) noexcept = default;

 whole& operator=(const whole&) = default;
 whole& operator=(whole&&) noexcept = default;

 bool operator==(const whole&) const = default;
};

55

© 2024 Adobe. All Rights Reserved.

whole/part examples

class whole {
 shared_ptr<const part> _shared_part;
public:
 whole() = delete;
 explicit whole(state s) : _shared_part{make_shared<part>(s)} { }

 explicit whole(const whole&) = default;
 whole(whole&&) noexcept = default;

 whole& operator=(const whole&) = default;
 whole& operator=(whole&&) noexcept = default;

 // bool operator==(const whole&) const = default; // OK
 bool operator==(const whole& w) const {
 return *_shared_part == *w._shared_part;
 }
};

56

© 2024 Adobe. All Rights Reserved.

whole/part examples

class whole {
 unique_ptr<part> _remote_part;
public:
 whole() = delete;
 explicit whole(state s) : _remote_part{make_unique<part>(s)} { }

 explicit whole(const whole& w) : _remote_part{make_unique<part>(*w._remote_part)} { }
 whole(whole&&) noexcept = default;

 whole& operator=(const whole& w) { return *this = whole{w}; }
 whole& operator=(whole&&) noexcept = default;

 // bool operator==(const whole&) const = default; // NOT OK
 bool operator==(const whole& w) const {
 return *_remote_part == *w._remote_part;
 }
};

57

Extrinsic Relationships

© 2024 Adobe. All Rights Reserved.

Extrinsic Relationships

▪ An extrinsic relationship is a relationship that is not a whole-part relationship

vector a{0, 1, 2, 3};

▪ a[0] is before a[1] is an extrinsic relationship

59

© 2024 Adobe. All Rights Reserved.

Relationships

▪ A relationship is a connection between elements of two sets

▪ For every relationship, there is a corresponding binary predicate. i.e., is_married(a, b)

▪ A relationship between objects may be severed by modifying or destroying either object

▪ A relationship may be witnessed by an object such as a pointer or index

▪ An object that is a witness to a severed relationship may be invalid

60

© 2024 Adobe. All Rights Reserved.

You Have an Extrinsic Relationship If...

▪ Your class stores a non-owning pointer or any pointer that doesn't witness a whole/part relation.

▪ Your class stores a key or index.

▪ You reference a global variable.

▪ You use any synchronization primitive (mutex, atomic, etc.).

61

© 2024 Adobe. All Rights Reserved.

Local Reasoning and Extrinsic Relationship

▪ To reason locally about extrinsic relationships they should be encapsulated into a class

▪ The relationships are maintained between parts by the class

▪ The class ensures the validity and correctness of the relationships by controlling access to the
related objects

▪ An intrusive witness in a part should only be manipulated by the owning class, and explicitly
severed if the object is moved or copied outside the whole

▪ Containers are examples of classes that manage extrinsic relationships between their parts

62

© 2024 Adobe. All Rights Reserved.

An Analogy

63

© 2024 Adobe. All Rights Reserved.

Object Independence

64

© 2024 Adobe. All Rights Reserved.

Object Independence

65

© 2024 Adobe. All Rights Reserved.

Structural Complexity - Hierarchies and Trees

66

© 2024 Adobe. All Rights Reserved.

Structural Complexity - Polytrees

67

© 2024 Adobe. All Rights Reserved.

Structural Complexity - DAGs

68

© 2024 Adobe. All Rights Reserved.

Structural Complexity - Directed Graphs

69

Free Relationships

© 2024 Adobe. All Rights Reserved.

Free relationships

▪ A free relationship is an extrinsic relationship that is not managed between parts of an object.

▪ If we assume local reasoning what meaningful structures can we build?

71

© 2024 Adobe. All Rights Reserved.

CALM

"Question: What is the family of problems that can be consistently
computed in a distributed fashion without coordination, and what

problems lie outside that family?"

– Keeping CALM: WhenDistributed Consistency is Easy

72

https://arxiv.org/pdf/1901.01930

© 2024 Adobe. All Rights Reserved.

CALM

"A program has a consistent, coordination-free distributed implementation if
and only if it is monotonic."

– Keeping CALM: WhenDistributed Consistency is Easy

73

https://arxiv.org/pdf/1901.01930

© 2024 Adobe. All Rights Reserved.

CALM

▪ Conflict-free replicated data types(CRDTs) provide a framework for monotonic programming
patterns

▪ An immutable variable is a monotonic pattern that transitions from undefined to its final value and
never returns. Immutable variables generalize to immutable data structures

74

© 2024 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

75

0

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

© 2024 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

76

0

a

1

b

2

c

3

d

4

e

5

f

6

g

7

hx x x x x

© 2024 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

77

0

a

1

b

2

c

5

f

6

g

7

hx x x x x

3

d

4

e

© 2024 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

78

0

a

3

d

4

e

8

i

9

j

Summary

© 2024 Adobe. All Rights Reserved.

Existing Code

▪ Be conservative

▪ Avoid modifying shared data

▪ If you don't know if it is shared, consider it immutable

▪ Avoid creating new sharing

▪ Don't hold a member by a shared reference if you didn't create it

▪ If dealing with reference semantics

▪ Make it clear if you are returning a new object or a reference to an existing one

▪ Remember the power of preconditions and push responsibility to the caller

80

© 2024 Adobe. All Rights Reserved.

Summary

▪ Interfaces should make the scope of the operation clear

▪ Projections provide an efficient way to achieve value semantics and manipulate parts

▪ It is the client's responsibility to uphold the Law of Exclusivity

▪ Don't pass projections that overlap a mutable projection

▪ Implementors provide types with value semantics

▪ Confine extrinsic relationships between parts within a class

▪ As the relationships between parts scale, seek a general solution

81

© 2024 Adobe. All Rights Reserved.

About the artist

Leandro Alzate

Berlin-based illustrator Leandro Alzate mixes bright
color palettes and stylized characters in his fanciful
work for editorial and advertising clients. He draws
inspiration from observing the ways people interact,
and combines that with his passion for architectural
shapes and spaces. He created this piece for the
German Ministry of Economy to encourage people to
explore work-from-home career opportunities.
Working with brushes and vector shapes, Alzate
created this piece entirely in Adobe Photoshop.

Made with

82

© 2024 Adobe. All Rights Reserved.83

