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Local Reasoning

▪ Local Reasoning is the ability to reason about a defined unit of code and verify its correctness 
without understanding all the contexts in which it is used or the implementations upon which it 
relies. 

▪ The two units of code this talk is concerned with are: 

▪ Functions 

▪ Classes
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Terminology

▪ Local Reasoning is concerned with both sides of an API  

▪ The client code is the code calling a function or holding an instance of a class 

▪ The implementor code is the implementation of a function or class
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Functions

void f();
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Functions

// Does nothing 
void f();
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Functions

// Does nothing 
void f() { }
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Functions

// Returns the successor of `x`. 
int f(int x) { return x + 1; }

7



Function Arguments



© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by 1 
void a(int& x) { x += 1; } 
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Function Arguments

// Increments the value of `x` by 1 
// Precondition: no other thread of execution is accessing `x` 
//     during this operation 
void a(int& x) { x += 1; } 
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General Preconditions:

▪ Arguments passed to a function by non-const reference cannot be accessed by other threads 
during the operation 

▪ Arguments passed to a function by const reference cannot be written by another thread during the 
operation 

▪ Unless otherwise specified
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Function Arguments

// Increments the value of `x` by 1 
void a(int& x) { x += 1; }

12



© 2024 Adobe. All Rights Reserved.

Transformations and Actions

There is a duality between transformations and the corresponding actions: An 
action is defined in terms of a transformation, and vice versa: 

void a(T& x) { x = f(x); } // action from transformation 

and 

T f(T x) { a(x); return x; } // transformation from action 

– Elements of Programming, Section 2.5

13



© 2024 Adobe. All Rights Reserved.

Argument Passing

▪ let arguments 

▪ const T& 

▪ inout arguments 

▪ T& 

▪ sink arguments 

▪ T&&, use a constraint when T is deduced 

template <class T> 
void f(T&&) requires std::is_rvalue_reference_v<T&&>;
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Argument Qualifiers

▪ let arguments 

▪ Postcondition: The client value is not modified 

▪ inout arguments 

▪ Postcondition: The client value may be modified 

▪ sink arguments 

▪ Postcondition: The client value is (assumed to be) consumed 

▪ The client value may be assigned to, or destructed

15



© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
  x += n;
}

16



© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
  x += n;
}

▪ What if this is called as:

int x{2};
offset(x, x);

println("{}", x);
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A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
  x += n;
}

▪ What if this is called as:

int x{2};
offset(x, x);

println("{}", x);

4
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A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
  for (int i = 0; i != n; ++x) ;
}
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A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
  for (int i = 0; i != n; ++x) ;
}

▪ What will this print?

int x{2};
offset(x, x);

println("{}", x);
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A more complex action

vector a{ 0, 1, 1, 0 };

erase(a, a[0]);

println("{}", a);
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A more complex action

vector a{ 0, 1, 1, 0 };

erase(a, a[0]);

println("{}", a);

▪ What will this print?

[1, 0]

– https://godbolt.org/z/hP1dsTPsa

18



© 2024 Adobe. All Rights Reserved.

General Preconditions:

▪ inout and sink arguments cannot be accessed except directly by the implementation for the 
duration of the call 

▪ let arguments passed by reference cannot be mutated for the duration of the call 

▪ Unless otherwise specified
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Swift Law of Exclusivity

To achieve memory safety, Swift requires exclusive access to a variable in order 
to modify that variable. In essence, a variable cannot be accessed via a different 
name for the duration in which the same variable is being modified as an inout 

argument or as self within a mutating method. 

– Swift 5 Exclusivity Enforcement 
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Rust Borrowing

Mutable references have one big restriction: if you have a mutable reference to 
a value, you can have no other references to that value. 

– The Rust Programming Language: References and Borrowing 
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Function Results

// Returns the successor of `x`. 
int f(int x) { return x + 1; }
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Return-by-reference

vector a{0, 1, 2, 3}; 
a.back() = 42; 

println("{}", a); 

[0, 1, 2, 42]
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Projection Qualifiers

▪ Projections qualifiers mirror argument qualifiers 

▪ Mutable (T&) projections allows the projected objects to be modified 

▪ Constant (const T&) projections do not allow the projected object to be modified 

▪ Consumable (T&&) projections allow the projected objects to be consumed
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Projection Qualifiers

▪ Returning consumable projections are uncommon 

▪ Usually return by-value is used but consumables may be more efficient when extracting a value 
from an rvalue: 

T&& extract() &&; 

▪ Mutable projections may also be consumed but require an additional operation to restore 
invariants on the owning object. i.e. 

auto e{std::move(a.back());} 
a.pop_back(); // erase the moved-from object
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Projection Validity

▪ A projection is invalidated when: 

▪ The object they are projected from is modified other than through a projection 

vector a{0}; 
int& p{a[0]};   // p is a projection 
a.push_back(1); // p is invalidated
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Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another 
non-overlapping projection
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Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another 
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e
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Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another 
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

28

vector a{0, 1, 2, 3}; 
const e& = a.back(); 
a[2] = 42; // e is not invalidated
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Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another 
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

▪ The lifetime of the object they are projected from ends

28

vector a{0, 1, 2, 3}; 
const e& = a.back(); 
a[2] = 42; // e is not invalidated
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Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another 
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

▪ The lifetime of the object they are projected from ends

int& p{vector{0}[0]}; // p is invalidated right after creation!
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vector a{0, 1, 2, 3}; 
const e& = a.back(); 
a[2] = 42; // e is not invalidated
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Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections
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Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 1); // Invalid - overlapping
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Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 1); // Invalid - overlapping

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 2); // OK - not overlapping
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Objects

void f(shared_ptr<widget> p);
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Objects

void f(shared_ptr<widget> p);

▪ What is the type of the argument for f()?
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Objects

void f(shared_ptr<widget> p);

▪ What is the type of the argument for f()?

▪ To understand f() we need to understand the extent p
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Equational Reasoning

▪ Equational reasoning is proving that expressions are equal by substituting equals for equals.

▪ Equational reasoning explains how code works and is a component part of larger proofs.
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Equational Reasoning

▪ Equational reasoning is proving that expressions are equal by substituting equals for equals.

▪ Equational reasoning explains how code works and is a component part of larger proofs.

▪ To know if two values are equal, we need to know the extent of the values.
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Equality

▪ Equality is an equivalence relation (reflexive, symmetric, and transitive) 

▪ Equality connects to copy (equal and disjoint)
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Transformations and Actions

There is a duality between transformations and the corresponding actions: An 
action is defined in terms of a transformation, and vice versa: 

void a(T& x) { x = f(x); } // action from transformation 

and 

T f(T x) { a(x); return x; } // transformation from action 

– Elements of Programming, Section 2.5
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Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity, 
disjointness, and ownership
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Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity, 
disjointness, and ownership

vector a{ 0, 1, 2, 3 };
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Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity, 
disjointness, and ownership

vector a{ 0, 1, 2, 3 };

struct {
  string name{ "John" };
  int id{0}
} b;
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Objects

void f(widget& p);

▪ This should only modify an instance of widget
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Objects

void f(widget& p);

▪ This should only modify an instance of widget

▪ It should be possible to express this as:

widget f(widget&& p);
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Extrinsic Relationships

▪ An extrinsic relationship is a relationship that is not a whole-part relationship 

vector a{0, 1, 2, 3}; 

▪ a[0] is before a[1] is an extrinsic relationship
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Relationships

▪ A relationship is a connection between elements of two sets 

▪ A relationship between objects may be severed by modifying either object 

▪ A relationship may be witnessed by an object such as a pointer or index 

▪ An object that is a witness to a severed relationship may be invalid
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Local Reasoning and Extrinsic Relationship

▪ To reason locally about extrinsic relationships they should be encapsulated into a class 

▪ The relationships are maintained between parts by the class 

▪ The class ensures the validity and correctness of the relationships by controlling access to the 
related objects 

▪ An intrusive witness in a part should only be manipulated by the owning class, and explicitly 
severed if the object is moved or copied outside the whole
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Free relationships

▪ A free relationship is an extrinsic relationship that is not managed between parts of an object. 

▪ If we assume local reasoning what meaningful structures can we build?
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CALM

"Question: What is the family of problems that can be consistently 
computed in a distributed fashion without coordination, and what 

problems lie outside that family?" 

– Keeping CALM: WhenDistributed Consistency is Easy
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CALM

"Consistency As Logical Monotonicity (CALM). A program has a consistent, 
coordination-free distributed implementation if and only if it is monotonic." 

– Keeping CALM: WhenDistributed Consistency is Easy
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CALM

▪ Conflict-free replicated data types(CRDTs) provide an object-oriented framework for monotonic 
programming patterns 

▪ An immutable variable is a monotonic pattern that transitions from undefined to its final value and 
never returns. Immutable variables generalize to immutable data structures
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Summary

▪ Interfaces should make the scope of the operation clear 

▪ Projections provide an efficient way to achieve value semantics and manipulate parts 

▪ It is the client's responsibility to uphold the Law of Exclusivity 

▪ Don't pass projections that overlap an inout argument projection 

▪ Implementors provide types with value semantics 

▪ Confine extrinsic relationships between parts within a class
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About the artist

Leandro Alzate 

Berlin-based illustrator Leandro Alzate mixes bright 
color palettes and stylized characters in his fanciful 
work for editorial and advertising clients. He draws 
inspiration from observing the ways people interact, 
and combines that with his passion for architectural 
shapes and spaces. He created this piece for the 
German Ministry of Economy to encourage people to 
explore work-from-home career opportunities. 
Working with brushes and vector shapes, Alzate 
created this piece entirely in Adobe Photoshop. 

Made with
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