
© 2024 Adobe. All Rights Reserved.1

© 2024 Adobe. All Rights Reserved.2

for playing an instrumental role in
making the NYC++ Meetup possible

Gold level sponsor

THANK YOU

© 2024 Adobe. All Rights Reserved.3

for supporting the NYC++ Meetup

THANK YOU
to our sponsors…

🙏 Monochrome Search
🙏 Undo

Bronze

© 2024 Adobe. All Rights Reserved.4

Chains: Exploration of an
alternative to Sender/Receiver
Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

© 2024 Adobe. All Rights Reserved.

History

▪ In 2015, I was involved in bringing Lightroom to the browser

▪ This was under asm.js - a single-threaded model

▪ Lightroom is a multi-threaded application

▪ The code had to be transformed so it could run single-threaded

▪ and scale to run efficiently on many cores

6

© 2024 Adobe. All Rights Reserved.

History - Boost futures with continuation

auto f = make_ready_future(42);

auto f0 = f.then([](auto a){ return a.get() + 2; });
auto f1 = move(f).then([](auto a){ return a.get() + 3; });

print("{}\n", f0.get());
print("{}\n", f1.get());

7

The Problem

© 2024 Adobe. All Rights Reserved.9

© 2024 Adobe. All Rights Reserved.10

© 2024 Adobe. All Rights Reserved.11

© 2024 Adobe. All Rights Reserved.12

© 2024 Adobe. All Rights Reserved.13

© 2024 Adobe. All Rights Reserved.14

© 2024 Adobe. All Rights Reserved.15

© 2024 Adobe. All Rights Reserved.16

© 2024 Adobe. All Rights Reserved.17

© 2024 Adobe. All Rights Reserved.18

© 2024 Adobe. All Rights Reserved.19

© 2024 Adobe. All Rights Reserved.20

© 2024 Adobe. All Rights Reserved.21

© 2024 Adobe. All Rights Reserved.22

© 2024 Adobe. All Rights Reserved.23

© 2024 Adobe. All Rights Reserved.24

© 2024 Adobe. All Rights Reserved.25

© 2024 Adobe. All Rights Reserved.

Rendering State Machine Structure

26

© 2024 Adobe. All Rights Reserved.

f(…)->rf(…) r

Futures

27

© 2024 Adobe. All Rights Reserved.

Futures: Continuations

28

g(f(x));

auto future = async(f, x) | g;

f(x) r0 g(r0) r1

© 2024 Adobe. All Rights Reserved.

Cancelation

29

© 2024 Adobe. All Rights Reserved.

Efficient Cancelation

▪ A dependency graph is a bipartite DAG of operations and their results

▪ Operations may be scheduled for execution, active (executing), or completed

▪ If a result is no longer needed (future is destructed), any uniquely contributing operations are
canceled

▪ Active operations receive a stop request

▪ Scheduled operations will not start, and their resources (which may include results of other
operations) are released

▪ Cancelation is efficient if every active uniquely contributing operations immediately receives a stop
request and no scheduled operations start after the cancelation.

30

Wait Free

© 2024 Adobe. All Rights Reserved.

No Waiting

▪ On a single-threaded system, tasks are queued to the main run loop

▪ This allows work to be interleaved with responding to events

▪ The amount of work done by each task needs to be small enough (a small grain size) to not
block user events from coming through and being responded to

▪ Waiting for a task to complete (a synchronous wait or sync wait) is a deadlock in a single-threaded
system

▪ In a multithreaded system, a sync wait is also very bad

32

© 2024 Adobe. All Rights Reserved.

Amdahl’s Law

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Processors

P
e
rf
o
rm
a
n
c
e

Each line represents 10% more
synchronization

© 2024 Adobe. All Rights Reserved.

Sync Wait Deadlocks

34

.

.

.

TaskTaskSTOP

© 2024 Adobe. All Rights Reserved.

.

.

.

Sync Wait Deadlocks

35

.

.

.

TaskTaskSTOPTask

.

.

.

TaskTaskSTOP

© 2024 Adobe. All Rights Reserved.

History

▪ I gave a talk on how I solved these problems, Better Code: Concurrency

▪ I cleaned up my code and packaged it as a little library on GitHub, stlab/libraries/concurrency

▪ Written almost entirely in the hotel bar at C++Now

▪ Felix Petriconi found it useful and contributed most of the current code

▪ The library is now in broad use at Adobe and other companies

36

© 2024 Adobe. All Rights Reserved.

Splits with stlab futures

▪ stlab futures are copyable and support attaching multiple continuations and efficient cancelation

auto a = f | g;
auto b = f | h;

37

The Problem with the Solution

© 2024 Adobe. All Rights Reserved.

Operation Costs are Not Reflected In Code

39

© 2024 Adobe. All Rights Reserved.

Cost of Future Continuations

▪ Continuations require shared state

▪ Memory allocation and deallocation with atomic operations to control lifetime

▪ Attaching a continuation requires synchronization

▪ Resolving a continuation requires synchronization

▪ All of this is under the hood for the simple expression, f | g

40

© 2024 Adobe. All Rights Reserved.

Don't use continuations as expensive function composition

▪ If you know the continuation in advance, don't write:

auto a = async(f) | g;

▪ But instead write:

auto a = async(compose(g, f));

41

© 2024 Adobe. All Rights Reserved.

Don't use continuations as expensive function composition

▪ Async operations need to take a callback and compose it with their work

auto op() -> future<T> { /*... */ return async(f); }

▪ Becomes:

auto op(invocable<T> auto g) -> future<decltype(g(T))> {
 /* ... */
 return async(compose(g, f));
}

42

© 2024 Adobe. All Rights Reserved.

Sender/Receivers are Function Composition

▪ then(f) | then(g)

▪ compose(g, f)

▪ transfer(s) | then(f)

▪ bind_front(s, f)

▪ transfer(s) | then(f) | then(g)

▪ bind_front(s, compose(g, f))

43

Links

© 2024 Adobe. All Rights Reserved.

Flat Composition - Links

▪ ... f | g | h

▪ The desired result is, compose(h, compose(g, f))

▪ But, without the nesting - we don't want to blow the stack

45

© 2024 Adobe. All Rights Reserved.

Links

46

f g h

© 2024 Adobe. All Rights Reserved.

Flat Composition - Exceptions

▪ Given f | g | h, what if an error occurs during the application?

▪ If we execute h(g(f(x))) and f throws an exception, can g or h catch it?

▪ The same is true with std::expected

▪ f(x).and_then(g).and_then(h)

47

Segments

© 2024 Adobe. All Rights Reserved.

Application - Segments

▪ on(s) | f | g

▪ on() creates a segment, a function that is the applicator function, s, bound to the subsequent
sequence of functions

▪ Additional functions may still be appended

bind_front(s, f | g);

▪ s determines the context in which f | g is executed

49

© 2024 Adobe. All Rights Reserved.

Segments

50

on(s) f g

© 2024 Adobe. All Rights Reserved.

Application - Segments

auto expector = [](auto f, auto... args) -> expected<...> {
 try { f(args...); }
 catch { return current_exception(); }
};

auto badd = [](int x, int y){
 if (x == 42) throw runtime_error("bad x");
 return x + y;
}

(on(expector) | badd | [](int x){ return x * 2; })(12, 5);

expected{34};

51

Chains

© 2024 Adobe. All Rights Reserved.

Chains

▪ A chain is simply a sequence of segments

▪ on(s) | f | g | on(t) | h

▪ Segments are linked - the next segment is part of the prior segment

[_f = f | g | (on(t) | h), _s = s](auto... args){
 return _s(_f, args...);
}

53

© 2024 Adobe. All Rights Reserved.

Chains

54

on(s) f g

on(t) h

on(u) i j k

© 2024 Adobe. All Rights Reserved.

Chains

55

on(s) f g on(t) h on(u) i j k

Async?

© 2024 Adobe. All Rights Reserved.

Mapping to Async

▪ A chain is a program that describes the sequence of execution

▪ We can create segments that provide an execution context to schedule the segment

▪ Functions on chains can append a promise and start the chain returning a future

▪ And bind additional arguments to every applicator (i.e., a stop token and set_exception
operation)

57

© 2024 Adobe. All Rights Reserved.

Ready for Async Execution

58

on(s) f g

on(t) h

on(u) i j k p

© 2024 Adobe. All Rights Reserved.

Mapping to Async

▪ Chains are a general purpose* facility to build functional descriptions (programs) in C++

▪ Sender/receivers are a language within which to build asynchronous descriptions**

▪ So far, I've implemented the equivalents of:

▪ schedule, just, just_error, transfer, then, on, sync_wait

▪ With efficient cancelation and error handling

59

© 2024 Adobe. All Rights Reserved.

Split

▪ ???

▪ We shifted from a model of functions with detached results to one of functions as results.

▪ What does it mean to split a function?

▪ Synchronization is required

▪ The shared portion should be executed once

▪ Canceling should only cancel the non-shared portion

▪ Must have no arguments, first invocation starts, and subsequent invocations ignored

60

© 2024 Adobe. All Rights Reserved.

Next Steps

▪ Chains can't currently do anything that sender/receivers can't do*

▪ But the model is simpler

▪ Chains are a prototype missing production features:

▪ void result types everywhere

▪ minimizing copies

▪ handling perfect forwarding and move-only types everywhere

▪ handling copy everywhere appropriate

▪ ...

61

© 2024 Adobe. All Rights Reserved.

About the artist

Alicia Sterling Beach

Los Angeles-based artist Alicia Sterling Beach uses
watercolors, colored pencils, and soft pastels to bring
beauty into the world. Growing up with the vivid
colors and music of Latin America, as well as the
Native cultures of the American Southwest, her
artwork is informed by her history and inspired by
nature, light, and classical music. Beach’s work is
featured on artlifting.com, a platform for artists
impacted by housing insecurity and disabilities. In this
piece, she combines symmetry and joyful colors to
express balance, harmony, and spiritual attainment.

62

© 2024 Adobe. All Rights Reserved.63

© 2024 Adobe. All Rights Reserved.64

https://nycpp.dev/support

Please consider supporting NYC++

