
© 2023 Adobe. All Rights Reserved..1

All the Safeties

Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

3

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

3

"70 percent of their vulnerabilities were due to
memory safety issues"

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

3

"70 percent of their vulnerabilities were due to
memory safety issues"

"NSA recommends using a memory safe language
when possible."

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

3

"70 percent of their vulnerabilities were due to
memory safety issues"

"NSA recommends using a memory safe language
when possible."

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

3

"70 percent of their vulnerabilities were due to
memory safety issues"

"NSA recommends using a memory safe language
when possible."

"Even when organizations put significant
effort and resources into detecting, fixing, and
mitigating this class of bugs, memory unsafety
continues to represent the majority of high-severity
security vulnerabilities and stability issues."

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

4

© 2023 Adobe. All Rights Reserved..

"Cybersecurity is essential to the basic functioning of
our economy, the operation of our critical
infrastructure, the strength or our democracy and
democratic institutions, the privacy of our data and
communications, and our national defense."

Why Talk About Safety?

4

© 2023 Adobe. All Rights Reserved..

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Why Talk About Safety?

5

© 2023 Adobe. All Rights Reserved..

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Why Talk About Safety?

5

Strategic Objective 3.1: Hold the Stewards of Our Data
Accountable

© 2023 Adobe. All Rights Reserved..

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Why Talk About Safety?

5

Strategic Objective 3.1: Hold the Stewards of Our Data
Accountable

Strategic Objective 3.3: Shift Liability for Insecure
Software Products and Services

© 2023 Adobe. All Rights Reserved..

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Why Talk About Safety?

5

Strategic Objective 3.1: Hold the Stewards of Our Data
Accountable

Strategic Objective 3.3: Shift Liability for Insecure
Software Products and Services

Strategic Objective 3.5: Leverage Federal Procurement
to Improve Accountability

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

6

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

6

"It is necessary to improve the functioning of the
internal market by laying down a uniform legal
framework for essential cybersecurity requirements for
placing products with digital elements on the Union
market."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

7

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

7

"Memory safety is a broad category of issues related to how a program
manages memory."

– NSA, Software Memory Safety

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

"Memory safety is the state of being
protected from various software
bugs and security vulnerabilities when
dealing with memory access, such
as buffer overflows and dangling
pointers."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

"Memory safety is the state of being
protected from various software
bugs and security vulnerabilities when
dealing with memory access, such
as buffer overflows and dangling
pointers."

"...we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors)."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

"Memory safety is the state of being
protected from various software
bugs and security vulnerabilities when
dealing with memory access, such
as buffer overflows and dangling
pointers."

"Memory safety is the property of a program
where memory pointers used always point to valid
memory"

"...we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors)."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

"Memory safety is the state of being
protected from various software
bugs and security vulnerabilities when
dealing with memory access, such
as buffer overflows and dangling
pointers."

"Memory safety is the property of a program
where memory pointers used always point to valid
memory"

"...we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors)."

"Memory safety is a term used by software and
security engineers to describe applications that
access the operating system's memory in a way
that doesn't cause errors."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

"Memory safety is the state of being
protected from various software
bugs and security vulnerabilities when
dealing with memory access, such
as buffer overflows and dangling
pointers."

"Race condition – concurrent reads/
writes to shared memory"

"Memory safety is the property of a program
where memory pointers used always point to valid
memory"

"...we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors)."

"Memory safety is a term used by software and
security engineers to describe applications that
access the operating system's memory in a way
that doesn't cause errors."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

8

"Memory safety is the state of being
protected from various software
bugs and security vulnerabilities when
dealing with memory access, such
as buffer overflows and dangling
pointers."

"Race condition – concurrent reads/
writes to shared memory"

"Unwanted aliasing – when the same
memory location is allocated and modified
twice for unrelated purposes."

"Memory safety is the property of a program
where memory pointers used always point to valid
memory"

"...we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors)."

"Memory safety is a term used by software and
security engineers to describe applications that
access the operating system's memory in a way
that doesn't cause errors."

© 2023 Adobe. All Rights Reserved..

Safety in terms of Safety Properties

The safety of a program is a set of safety properties that cannot happen given valid input.

9

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

10

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

10

To prove the correctness of a program, one must prove two
essentially different types of properties about it, which we
call safety and liveness properties.

A safety property is one which states that something will not
happen.

A liveness property is one which states that something must
happen.

– Leslie Lamport, Proving the Correctness of
Multiprocess Programs

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisfy a safety property, then the defining bad thing occurs
at some point in the operation

11

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisfy a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

11

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisfy a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

▪ If the execution continues, with subsequent operations, the bad thing happened within the
composition

11

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisfy a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

▪ If the execution continues, with subsequent operations, the bad thing happened within the
composition

Safety properties compose

11

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisfy a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

▪ If the execution continues, with subsequent operations, the bad thing happened within the
composition

Safety properties compose

▪ If every common operation satisfies a safety property, every composition of those operations also
satisfies the safety property

11

© 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road

12

© 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road

▪ A safe operation does not allow the car to go off the road*

12

© 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road

▪ A safe operation does not allow the car to go off the road*

▪ If all operations can be shown to satisfy the safety property,
then the condition prevented by the property cannot
occur*

12

© 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road

▪ A safe operation does not allow the car to go off the road*

▪ If all operations can be shown to satisfy the safety property,
then the condition prevented by the property cannot
occur*

*Assuming the preconditions are not violated

12

© 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

13

© 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

The car will eventually reach its destination

13

© 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

The car will eventually reach its destination

This may be achieved by a series of stepwise refinements

13

© 2023 Adobe. All Rights Reserved..

Safety of a Programming Language

The safety of a programming language is a set of safety properties guaranteed for any expressible
program.

14

© 2023 Adobe. All Rights Reserved..

Safety of a Programming Language

The safety of a programming language is a set of safety properties guaranteed for any expressible
program.

Every program that can be written in the language (or a safe subset of the language) satisfies the safety
properties of the language.

14

© 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

limiting expressibility - the language cannot express code which would violate the safety property.

15

© 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

limiting expressibility - the language cannot express code which would violate the safety property.

runtime validation - the program prevents a violation by resulting in an error or termination

15

© 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

limiting expressibility - the language cannot express code which would violate the safety property.

runtime validation - the program prevents a violation by resulting in an error or termination

defined results - the program defines safe behavior of otherwise unsafe operations

15

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

The language has no operations that access memory

▪ which is not allocated

▪ has not been initialized

▪ has been released

16

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

The language has no operations that access memory

▪ which is not allocated

▪ has not been initialized

▪ has been released

16

© 2023 Adobe. All Rights Reserved..

Memory Safe?

void set_element(int array[], int index) {
 array[index] = 42;
}

int main() {
 int array[]{1, 2, 3};
 int what = 0;

 set_element(array, 3);

 cout << what << "\n";
}

17

© 2023 Adobe. All Rights Reserved..

Memory Safe?

void set_element(int array[], int index) {
 array[index] = 42;
}

int main() {
 int array[]{1, 2, 3};
 int what = 0;

 set_element(array, 3);

 cout << what << "\n";
}

42

17

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

18

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

▪ Any defect can cause resources to be accessed in unintended ways

18

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

▪ Any defect can cause resources to be accessed in unintended ways

Language safety can aid security by:

18

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

▪ Any defect can cause resources to be accessed in unintended ways

Language safety can aid security by:

▪ Making defects harder to write and easier to see

18

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

▪ Any defect can cause resources to be accessed in unintended ways

Language safety can aid security by:

▪ Making defects harder to write and easier to see

▪ Containing the damage due to a defect

18

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

▪ Any defect can cause resources to be accessed in unintended ways

Language safety can aid security by:

▪ Making defects harder to write and easier to see

▪ Containing the damage due to a defect

A key property of a secure system is noninterference

18

© 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

▪ Any defect can cause resources to be accessed in unintended ways

Language safety can aid security by:

▪ Making defects harder to write and easier to see

▪ Containing the damage due to a defect

A key property of a secure system is noninterference

▪ The noninterference property holds if and only if any sequence of low inputs will produce the same
low outputs, regardless of what the high inputs are

18

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

19

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

19

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

19

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

▪ Inspired by separation logic and local reasoning

19

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

▪ Inspired by separation logic and local reasoning

▪ The frame rule satisfies the noninterference property

19

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

▪ Inspired by separation logic and local reasoning

▪ The frame rule satisfies the noninterference property

The frame rule relates to John McCall's Law of Exclusivity
from Swift

19

© 2023 Adobe. All Rights Reserved..

Frame Rule for Programming Languages

"A verified program can only affect a well-defined portion of the state,
leaving all other memory regions untouched."

20

© 2023 Adobe. All Rights Reserved..

Frame Rule for Programming Languages

An operation can only access and affect objects defined by the operation's interface, with all other
objects unaffected.

▪ The Law of Exclusivity follows

21

© 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

22

© 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

▪ Sanitizers can help

22

© 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

▪ Sanitizers can help

▪ But at a performance cost, which often rules them out for
production code

22

© 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

▪ Sanitizers can help

▪ But at a performance cost, which often rules them out for
production code

▪ If not used in production, sanitizers should be combined
with fuzzers

22

© 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

▪ Sanitizers can help

▪ But at a performance cost, which often rules them out for
production code

▪ If not used in production, sanitizers should be combined
with fuzzers

▪ No safety properties hold in the presence of UB

22

© 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

▪ Sanitizers can help

▪ But at a performance cost, which often rules them out for
production code

▪ If not used in production, sanitizers should be combined
with fuzzers

▪ No properties hold in the presence of UB

23

© 2023 Adobe. All Rights Reserved..

“Understanding why software fails is important, but the real
challenge is understanding why software works.”

– Alexander Stepanov

24

© 2023 Adobe. All Rights Reserved..

The Illusion of Safety

If a language is Turing complete, we can always construct a C
machine and execute all the unsafe code

25

© 2023 Adobe. All Rights Reserved..

The Illusion of Safety

If a language is Turing complete, we can always construct a C
machine and execute all the unsafe code

Safety can always be circumvented and often is for
performance or expressibility

25

© 2023 Adobe. All Rights Reserved..

The Illusion of Safety

If a language is Turing complete, we can always construct a C
machine and execute all the unsafe code

Safety can always be circumvented and often is for
performance or expressibility

Safety is defined at a specific level of abstraction; it depends
on how we define "operation"

Safety is a tool for local reasoning

25

© 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

26

© 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes

26

© 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes

▪ It will require an explicit safe subset

26

© 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes

▪ It will require an explicit safe subset

▪ There is a necessary shift in the abstraction level

26

© 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes

▪ It will require an explicit safe subset

▪ There is a necessary shift in the abstraction level

26

Forward

© 2023 Adobe. All Rights Reserved..

A (New) Possible Future

28

© 2023 Adobe. All Rights Reserved..

A (New) Possible Future

An extensive library of proven generic components

28

© 2023 Adobe. All Rights Reserved..

A (New) Possible Future

An extensive library of proven generic components

A small number of non-Turing complete declarative forms for assembling the generic components

28

© 2023 Adobe. All Rights Reserved..

Dafny

method Reverse(a: seq<int>) returns (r: seq<int>)
 ensures |a| == |r|
 // ensures forall i :: 0 <= i < |a| ==> r[i] == a[|a| - i - 1]
{
 var remainder := a;
 r := [];
 while (|remainder| > 1)
 invariant |remainder| == |a| - |r|
 invariant forall i :: 0 <= i < |r| ==> r[i] == a[|r| - i - 1]
 ^^^^^^ This loop invariant might not be maintained by the loop.
 {
 r := [remainder[0]] + r;
 remainder := remainder[1..];
 }
 r := remainder + r;
}

29

© 2023 Adobe. All Rights Reserved..

Bing Chat

"How can I strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?"

30

© 2023 Adobe. All Rights Reserved..

Bing Chat

"How can I strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?"

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here’s an example:

30

© 2023 Adobe. All Rights Reserved..

Bing Chat

"How can I strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?"

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here’s an example:

 invariant forall i :: 0 <= i < |remainder| ==> remainder[i] == a[|r| + i]

30

© 2023 Adobe. All Rights Reserved..

Bing Chat

"How can I strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?"

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here’s an example:

 invariant forall i :: 0 <= i < |remainder| ==> remainder[i] == a[|r| + i]

This invariant states that for all indices i in the range [0, |remainder|), the i-th element
of remainder is equal to the (i + |r|)-th element of a. This ensures that the elements
of remainder are exactly the elements of a that have not yet been added to r."

30

© 2023 Adobe. All Rights Reserved..

Dafny

method Reverse(a: seq<int>) returns (r: seq<int>)
 ensures |a| == |r|
 ensures forall i :: 0 <= i < |a| ==> r[i] == a[|a| - i - 1]
{
 var remainder := a;
 r := [];
 while (|remainder| > 1)
 invariant |remainder| == |a| - |r|
 invariant forall i :: 0 <= i < |r| ==> r[i] == a[|r| - i - 1]
 invariant forall i :: 0 <= i < |remainder| ==> remainder[i] == a[|r| + i]
 {
 r := [remainder[0]] + r;
 remainder := remainder[1..];
 }
 r := remainder + r;
}

31

© 2023 Adobe. All Rights Reserved..

A (New) Possible Future

A large library of proven generic components

A small number of non-Turing complete declarative forms for assembling the generic components

32

© 2023 Adobe. All Rights Reserved..

A (New) Possible Future

A large library of proven generic components

A small number of non-Turing complete declarative forms for assembling the generic components

Built with AI assisted verification

32

© 2023 Adobe. All Rights Reserved..

Closing

33

© 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

33

© 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

Use safety properties so your code doesn't do bad things

33

© 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

Use safety properties so your code doesn't do bad things

Use the frame rule to promote security through local
reasoning

33

© 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

Use safety properties so your code doesn't do bad things

Use the frame rule to promote security through local
reasoning

Don't lose sight that correctness is the goal

33

© 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

Use safety properties so your code doesn't do bad things

Use the frame rule to promote security through local
reasoning

Don't lose sight that correctness is the goal

33

© 2023 Adobe. All Rights Reserved..34

About the artist

MUE Studio

MUE Studio in New York City, a collaboration of
Minjiin Kang and Mijoo Kim, creates visual
experiences through 3D image design and
photography. Drawing inspiration from the
architecture and culture they see around them every
day, the duo strive to blur the boundary between
fantasy and reality in their work. For this piece, they
used Adobe Photoshop and Cinema 4D to build a
dreamlike space that connects emotionally with
viewers and offers them an escape.

Made with

© 2023 Adobe. All Rights Reserved..35

