.‘._-a... w. . Y
R

O'l'”h

sl Med

h‘ All the Safeties
Adobe

Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

Be

Artwork by MUE Studio

Why Talk About Safety?

National Security Agency Cybersecurity Information Sheet

Software Memory Safety

Executive summary

Modern society relies heavily on software-based automation, implicitly trusting
developers to write software that operates in the expected way and cannot be
compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018
70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also
found a similar percentage of memory safety vulnerabilities over several years in
Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code
execution or other adverse effects, which can often compromise a device and be the
first step in large-scale network intrusions.

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility
in memory management while relying heavily on the programmer to perform the needed
checks on memory references. Simple mistakes can lead to exploitable memory-based
vulnerabilities. Software analysis tools can detect many instances of memory
management issues and operating environment options can also provide some
protection, but inherent protections offered by memory safe software languages can
prevent or mitigate most memory management issues. NSA recommends using a
memory safe language when possible. While the use of added protections to non-
memory safe languages and the use of memory safe languages do not provide absolute
protection against exploitable memory issues, they do provide considerable protection.
Therefore, the overarching software community across the private sector, academia,
and the U.S. Government have begun initiatives to drive the culture of software
development towards utilizing memory safe languages. [3] [4] [5]

U/00/219936-22 | PP-22-1723 | NOV 2022 Ver. 1.0

'\‘ Adobe 3 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

National Security Agency Cybersecurity Information Sheet

Software Memory Satety '70 percent of their vulnerabilities were due to

Executive summary o 11
Modern society relies heavily on software-based automation, implicitly trusting m em Or Safet lssues
developers to write software that operates in the expected way and cannot be y y

compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018
70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also
found a similar percentage of memory safety vulnerabilities over several years in
Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code

execution or other adverse effects, which can often compromise a device and be the
first step in large-scale network intrusions.

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility
in memory management while relying heavily on the programmer to perform the needed
checks on memory references. Simple mistakes can lead to exploitable memory-based
vulnerabilities. Software analysis tools can detect many instances of memory
management issues and operating environment options can also provide some
protection, but inherent protections offered by memory safe software languages can
prevent or mitigate most memory management issues. NSA recommends using a
memory safe language when possible. While the use of added protections to non-
memory safe languages and the use of memory safe languages do not provide absolute
protection against exploitable memory issues, they do provide considerable protection.
Therefore, the overarching software community across the private sector, academia,
and the U.S. Government have begun initiatives to drive the culture of software
development towards utilizing memory safe languages. [3] [4] [5]

U/00/219936-22 | PP-22-1723 | NOV 2022 Ver. 1.0

h‘ Adobe 3 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

National Security Agency Cybersecurity Information Sheet

Software Memory Satety '70 percent of their vulnerabilities were due to

Executive summary o 11
Modern society relies heavily on software-based automation, implicitly trusting m em Or Safet lssues
developers to write software that operates in the expected way and cannot be y y
compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de- 1} ’
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018 NSA re Com m en S USIng G m em Ory Sa e ang uage
70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also
found a similar percentage of memory safety vulnerabilities over several years in . Il
Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code Wh en P OSSIb [e

[]

execution or other adverse effects, which can often compromise a device and be the
first step in large-scale network intrusions.

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility
in memory management while relying heavily on the programmer to perform the needed
checks on memory references. Simple mistakes can lead to exploitable memory-based
vulnerabilities. Software analysis tools can detect many instances of memory
management issues and operating environment options can also provide some
protection, but inherent protections offered by memory safe software languages can
prevent or mitigate most memory management issues. NSA recommends using a
memory safe language when possible. While the use of added protections to non-
memory safe languages and the use of memory safe languages do not provide absolute
protection against exploitable memory issues, they do provide considerable protection.
Therefore, the overarching software community across the private sector, academia,
and the U.S. Government have begun initiatives to drive the culture of software
development towards utilizing memory safe languages. [3] [4] [5]

U/00/219936-22 | PP-22-1723 | NOV 2022 Ver. 1.0

F\\ Adobe 3 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

’ National Security Agency Cybersecurity Information Sheet

'70 percent of their vulnerabilities were due to
memory sdafety issues”

"NSA recommends using a memory sdfe language
when possible.”

Future of Memory Safety

Challenges and Recommendations

YAEL GRAUER
JANUARY 2023

Consumer .
Reports ’ E‘ Security Planner

F\\ Adobe 3 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

; National Security Agency Cybersecurity Information Sheet

F\\ Adobe

2 = T B OGS = N0 3
@ ® 338 ®d 5 3 o a4 X &

a o — o
® =S =
< o S

Future of Memory Safety

Challenges and Recommendations

YAEL GRAUER
JANUARY 2023

CRReports ’ E‘ Security Planner

'70 percent of their vulnerabilities were due to
memory sdafety issues”

"NSA recommends using a memory sdfe language
when possible.”

"Even when organizations put significant

effort and resources into detecting, fixing, and
mitigating this class of bugs, memory unsafety
continues to represent the majority of high-severity
security vulnerabilities and stability issues.”

3 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

NATIONAL

CYBERSECURITY
STRATEGY

MARCH 2023

F\\ Adobe © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

"Cybersecurity is essential to the basic functioning of
NATIONAL our economy, the operation of our critical

CYBERSECURITY ~ infrastructure, the strength or our democracy and
STRATEGY o

democratic institutions, the privacy of our data and
communications, and our national defense.”

MARCH 2023

F\\ Adobe 4 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

Pillar Three | Shape Market Forces to Drive Security
and Resilience

NATIONAL

CYBERSECURITY
STRATEGY

MARCH 2023

F\\ Adobe © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Strategic Objective 3.1: Hold the Stewards of Our Data
TS e Accountable

CYBERSECURITY
STRATEGY

MARCH 2023

F\\ Adobe © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Strategic Objective 3.1: Hold the Stewards of Our Data
NATIONAL Accountable

CYBERSECURITY | o S
STRATEGY Strategic Objective 3.3: Shift Liability for Insecure

S Software Products and Services

F\\ Adobe 5 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Strategic Objective 3.1: Hold the Stewards of Our Data
NATIONAL Accountable

CYBERSECURITY | o S
STRATEGY Strategic Objective 3.3: Shift Liability for Insecure

S Software Products and Services

Strategic Objective 3.5: Leverage Federal Procurement
to Improve Accountability

F\\ Adobe 5 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

F\\ Adobe

EN

EUROPEAN
COMMISSION

Brussels, 15.9.2022
COM(2022) 454 final

2022/0272 (COD)

Proposal for a
REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
on horizontal cybersecurity requirements for products with digital elements and

amending Regulation (EU) 2019/1020

(Text with EEA relevance)

{SEC(2022) 321 final} - {SWD(2022) 282 final} - {SWD(2022) 283 final}

EN

© 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

F\\ Adobe

EUROPEAN
COMMISSION

Brussels, 15.9.2022
COM(2022) 454 final
2022/0272 (COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

(Text with EEA relevance)

{SEC(2022) 321 final} - {SWD(2022) 282 final} - {SWD(2022) 283 final}

EN EN

"It is necessary to improve the functioning of the
internal market by laying down a uniform legal
framework for essential cybersecurity requirements for
placing products with digital elements on the Union

market."

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

'\‘ Adobe 7/ © 2023 Adobe. All Rights Reserved..

What is Memory Safety?

"Memory safety is a broad category of issues related to how a program
manages memory.”
- NSA, Software Memory Safety

F\\ Adobe 7 © 2023 Adobe. All Rights Reserved..

What is Memory Safety?

'\‘ Adobe 8 © 2023 Adobe. All Rights Reserved..

What is Memory Safety?

"Memory safety is the state of being
protected from various software

bugs and security vulnerabilities when
dealing with memory access, such

as buffer overflows and dangling
pointers.”

F\\ Adobe © 2023 Adobe. All Rights Reserved..

What is Memory Safety?

"Memory safety is the state of being
protected from various software

bugs and security vulnerabilities when
dealing with memory access, such

as buffer overflows and dangling
pointers.”

".we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors).”

'«‘ Adobe 8 © 2023 Adobe. All Rights Reserved..

What is Memory Safety? |
"Memory safety is the property of a program

where memory pointers used always point to valid
‘Memory safety is the state of being memory"

protected from various software
bugs and security vulnerabilities when
dealing with memory access, such

as buffer overflows and dangling
pointers.”

".we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors).”

'«‘ Adobe 8 © 2023 Adobe. All Rights Reserved..

What is Memory Safety? |
"Memory safety is the property of a program

where memory pointers used always point to valid
‘Memory safety is the state of being memory"

protected from various software
bugs and security vulnerabilities when
dealing with memory access, such

as buffer overflows and dangling
pointers.”

".we define a program as being fully memory safe if
it satisfies the following criteria: it never reads
uninitialized memory, performs no illegal operations
on the heap (no invalid/double frees), and does not
access freed memory (no dangling pointer errors).”

"Memory safety is a term used by software and
security engineers to describe applications that

access the operating system's memory in a way
that doesn't cause errors.”

'«‘ Adobe 8 © 2023 Adobe. All Rights Reserved..

What is Memory Safety? |
"Memory safety is the property of a program

where memory pointers used always point to valid

"Memory safety is the state of being memory"

protected from various software

bugs and security vulnerabilities when ".we define a program as being fully memory safe if
dealing with memory access, such it satisfies the following criteria: it never reads

as Puﬁef overflows and dangling uninitialized memory, performs no illegal operations
pointers.’ on the heap (no invalid/double frees), and does not

access freed memory (no dangling pointer errors).”
I L
Race condition - concurrent reads/

writes to shared memory "Memory safety is a term used by software and

security engineers to describe applications that
access the operating system's memory in a way
that doesn't cause errors.”

'«‘ Adobe 8 © 2023 Adobe. All Rights Reserved..

What is Memory Safety? |
"Memory safety is the property of a program

where memory pointers used always point to valid

"Memory safety is the state of being memory"

protected from various software

bugs and security vulnerabilities when ".we define a program as being fully memory safe if
dealing with memory access, such it satisfies the following criteria: it never reads

as Puﬁef overflows and dangling uninitialized memory, performs no illegal operations
pointers.’ on the heap (no invalid/double frees), and does not

access freed memory (no dangling pointer errors).”
I L
Race condition - concurrent reads/

writes to shared memory "Memory safety is a term used by software and

security engineers to describe applications that
access the operating system's memory in a way
that doesn't cause errors.”

"Unwanted aliasing - when the same
memory location is allocated and modified
twice for unrelated purposes.”

'«‘ Adobe 8 © 2023 Adobe. All Rights Reserved..

Safety in terms of Safety Properties

The safety of a program is a set of safety properties that cannot happen given valid input.

'\‘ Adobe o © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

'\‘ Adobe 10 © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

F\\ Adobe

To prove the correctness of a program, one must prove two
essentially different types of properties about it, which we
call safety and liveness properties.

A safety property is one which states that something will not
happen.

A liveness property is one which states that something must
happen.

— Leslie Lamport, Proving the Correctness of
Multiprocess Programs

10

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

f some execution of an operation does not satisty a safety property, then the defining bad thing occurs
at some point in the operation

F\\ Adobe I © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

f some execution of an operation does not satisty a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

F\\ Adobe I © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisty a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

= |If the execution continues, with subsequent operations, the bad thing happened within the
composition

F\\ Adobe I © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisty a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

= |If the execution continues, with subsequent operations, the bad thing happened within the
composition

Safety properties compose

F\\ Adobe I © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

If some execution of an operation does not satisty a safety property, then the defining bad thing occurs
at some point in the operation

Safety properties are irremediable

= |If the execution continues, with subsequent operations, the bad thing happened within the
composition

Safety properties compose

= |f every common operation satisfies a safety property, every composition of those operations also
satisfies the safety property

'\‘ Adobe 1 © 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road

'\‘ Adobe 12 © 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road

glp—

= A safe operation does not allow the car to go off the road*

'\‘ Adobe 12 © 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road
= A safe operation does not allow the car to go oft the road*

» |f all operations can be shown to satisty the safety property,
then the condition prevented by the property cannot

occur® - C—__—j

'\‘ Adobe 12 © 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

The car cannot drive off the road
= A safe operation does not allow the car to go oft the road*

» |f all operations can be shown to satisty the safety property,
then the condition prevented by the property cannot
occur®

*Assuming the preconditions are not violated

'\‘ Adobe 12 © 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

'\‘ Adobe 13 © 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

The car will eventually reach its destination

'\‘ Adobe 13 © 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

The car will eventually reach its destination

This may be achieved by a series of stepwise refinements

'\‘ Adobe 13 © 2023 Adobe. All Rights Reserved..

Safety of a Programming Language

The safety of a programming language is a set of safety properties guaranteed for any expressible
program.

h‘ Adobe 14 © 2023 Adobe. All Rights Reserved..

Safety of a Programming Language

The safety of a programming language is a set of safety properties guaranteed for any expressible
program.

Every program that can be written in the language (or a safe subset of the language) satisfies the safety
properties of the language.

F\\ Adobe 14 © 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

limiting expressibility - the language cannot express code which would violate the safety property.

h‘ Adobe 15 © 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

limiting expressibility - the language cannot express code which would violate the safety property.

runtime validation - the program prevents a violation by resulting in an error or termination

F\\ Adobe 15 © 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

limiting expressibility - the language cannot express code which would violate the safety property.
runtime validation - the program prevents a violation by resulting in an error or termination

defined results - the program defines safe behavior of otherwise unsafe operations

F\\ Adobe 15 © 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

The language has no operations that access memory
= which is not allocated
= has not been initialized

» has been released

h‘ Adobe 16 © 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

The language has no operations that access memory
= which is not allocated
= has not been initialized

» has been released

'\‘ Adobe 16 © 2023 Adobe. All Rights Reserved..

Memory Safe?

void set_element(int array[], int index) {

array[index] = 42;

}

int main() {
int arrayl[1{1, 2, 3};
int what = 0;
set_element(array, 3);

cout << what << "\n":

F\\ Adobe

17

© 2023 Adobe. All Rights Reserved..

Memory Safe?

void set_element(int array[], int index) {
array[index] = 42;
}

int main() {
int arrayl[1{1, 2, 3};
int what = 0;
set_element(array, 3);

cout << what << "\n":

42

F\\ Adobe 17 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

F\\ Adobe 18 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

= Any defect can cause resources to be accessed in unintended ways

F\\ Adobe 18 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

= Any defect can cause resources to be accessed in unintended ways

L anguage safety can aid security by:

F\\ Adobe 18 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

= Any defect can cause resources to be accessed in unintended ways
L anguage safety can aid security by:

= Making defects harder to write and easier to see

F\\ Adobe 18 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

= Any defect can cause resources to be accessed in unintended ways
L anguage safety can aid security by:
= Making defects harder to write and easier to see

= Containing the damage due to a defect

F\\ Adobe 18 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

= Any defect can cause resources to be accessed in unintended ways
L anguage safety can aid security by:

= Making defects harder to write and easier to see

= Containing the damage due to a defect

A key property of a secure system is noninterference

'\‘ Adobe 18 © 2023 Adobe. All Rights Reserved..

What's the Problem?

A secure system is a system where the resources are used and accessed as intended under all
circumstances

= Any defect can cause resources to be accessed in unintended ways

L anguage safety can aid security by:

= Making defects harder to write and easier to see

= Containing the damage due to a defect

A key property of a secure system is noninterference

» The noninterferer

low out

F\\ Adobe

DUTS, rega

ce property holds if anc

dless of what the high i

Nputs are

18

only if any sequence of low inputs will produce the same

© 2023 Adobe. All Rights Reserved..

What is 3 Memory Safe Language?

The Meaning of Memory Safety

Arthur Azevedo de Amorim!, Ciitilin Hritcu?, and Benjamin C. Pierce?

! Camegie Mellon University
* Inna Pars
4 University of Fennsylvania

Abstract We give a rigorous characierization of what it means for a2 program-
ming language to be memaory safe. capturing the intuition that memory safety sup-
ports local reasoning abow state. We formalize this principle in two ways. First,
we show how a small memory-safe language validates a mominterference prop-
erty: a program can neither affect nor be arected by unreachabile parts of the state.

Second, we exiend separation logic, 2 proof system for heap-manipulating pro-
grams, with a “memory-safe variant”™ of Its frame rule. The new ruke Is stronger

because it applies even when parts of the program are buggy or malicioas, but
also weaker because it demands a stricter form of sparation between parts of the
program staie. We also coasider a number of pragmatically motivated variations
on memory sagety and the masoning principles they support. As an application of
our characterization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofen disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmestricted pointer arithmetic [28], though it may
yield undefined behavior according to the language standard [21, §6.5.6]). Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we
aim to formalize memory safety in terms of reasoning principles that programmers
can soundly apply in its presence (or conversely, principles that programmers should

arXiv:1705.07354v3 |cs.PL] 6 Apr 2018

'\‘ Adobe 19 © 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

The Meaning of Memory Safety

Arthur Azevedo de Amorim®, Citilin Hritcu?, and Benjamin C. Pierce?

! Carnegie Mellon University
* Inria Paris
3 University of Pennsylvania

on memory sasety and the masoning principies they sapport. As an application of
our characerization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofen disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmestricted pointer arithmetic [28], though it may
y#ld undefined behavior according to the language standard [21, §6.5.6]. Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we
aim to formalize memory safety in terms of reasoning principles that programmers
can soundly apply in its presence (or conversely, principles that programmers should

arXiv:1705.07354v3 |c

'\‘ Adobe 19 © 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

FA\ Adobe 19

The Meaning of Memory Safety

Arthur Azevedo de Amorim!, Citdlin Hritcu?, and Benjamin C. Pierce®

! Carnegie Mellon University
* Inria Paris
3 University of Pennsylvania

7 b on memory sasety and the masoning principies they sapport. As an application of [
our characerization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofen disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmestricted pointer arithmetic [28], though it may
y#ld undefined behavior according to the language standard [21, §6.5.6]. Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we
aim to formalize memory safety in terms of reasoning principles that programmenrs
can soundly apply in its presence (or conversely, principles that programmers should

arXiv:1705.07354v3 |c

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

= Inspired by separation logic and local reasoning

'&‘ Adobe 19

Arthur Azevedo de Amorim!, Citdlin Hritcu?, and Benjamin C. Pierce

! Carnegie Mellon University

2 Inria Paris

3 University of Pennsylvania

The Meaning of Memory Safety

3

|

arXiv:1705.07354v3

on memory sasety and the masoning principies they sapport. As an application of
our characerization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofien disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmstricted pointer arithmetic [28], though it may
y#eld undefined behavior according to the language standard [21, §6.5.6]. Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we
aim to formalize memory safety in terms of reasoning principles that programmenrs
can soundly apply in its presence (or conversely, principles that programmers should

—_

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

= Inspired by separation logic and local reasoning

= The frame rule satisfies the noninterterence property

F.\\ Adobe 19

Arthur Azevedo de Amorim!, Citdlin Hritcu?, and Benjamin C. Pierce

! Carnegie Mellon University

2 Inria Paris

3 University of Pennsylvania

The Meaning of Memory Safety

3

arXiv:1705.07354v3 Ll

on memory sasety and the masoning principies they sapport. As an application of
our characerization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofien disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmstricted pointer arithmetic [28], though it may
y#eld undefined behavior according to the language standard [21, §6.5.6]. Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we
aim to formalize memory safety in terms of reasoning principles that programmenrs
can soundly apply in its presence (or conversely, principles that programmers should

—_

© 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

frame rule: A verified program can only affect a well-
defined portion of the state, leaving all other memory
regions untouched

= Inspired by separation logic and local reasoning

= The frame rule satisfies the noninterterence property

The frame rule relates to John McCall's Law of Exclusivity
from Swift

F\\ Adobe 19

The Meaning of Memory Safety

Arthur Azevedo de Amorim!, Citilin Hritcu?, and Benjamin C. Pierce®

! Carnegie Mellon University
* Inria Paris
3 University of Pennsylvania

our characerization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofien disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmstricted pointer arithmetic [28], though it may
y#eld undefined behavior according to the language standard [21, §6.5.6]. Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we
aim to formalize memory safety in terms of reasoning principles that programmenrs
can soundly apply in its presence (or conversely, principles that programmers should

arXiv:1705.07354v3 J

© 2023 Adobe. All Rights Reserved..

on memory safety and the masoning principles they sapport. As an application of [

Frame Rule for Programming Languages

"A verified program can only affect a well-defined portion of the state,
eaving all other memory regions untouched.’

h‘ Adobe 20 © 2023 Adobe. All Rights Reserved..

Frame Rule for Programming Languages

An operation can only access and affect objects defined by the operation's interface, with all other
bjects unaffected.

O

= The Law of Exclusivity follows

F\\ Adobe 21 © 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

'\‘ Adobe 22 © 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

= Sanitizers can help

'\‘ Adobe 22 © 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

= Sanitizers can help

= But at a performance cost, which often rules them out for
production code

'\‘ Adobe 22 © 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

= Sanitizers can help

= But at a performance cost, which often rules them out for
production code

* If not used in production, sanitizers should be combined
with fuzzers

'\‘ Adobe 22 © 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

= Sanitizers can help

= But at a performance cost, which often rules them out for
production code

* If not used in production, sanitizers should be combined
with fuzzers

= No safety properties hold in the presence of UB

'\‘ Adobe 22 © 2023 Adobe. All Rights Reserved..

Memory Safety in C++

Shared mutable references make memory safety possible
only with great discipline

= Sanitizers can help

= But at a performance cost, which often rules them out for
production code

* If not used in production, sanitizers should be combined
with fuzzers

* No properties hold in the presence of UB

'\‘ Adobe 23 © 2023 Adobe. All Rights Reserved..

"Understanding why software fails is important, but the real
challenge is understanding why software works.

— Alexander Stepanov

'\‘ Adobe 24 © 2023 Adobe. All Rights Reserved..

The Illusion of Safety

If 3 language is Turing complete, we can always construct a C
machine and execute all the unsafe code

'\‘ Adobe 25 © 2023 Adobe. All Rights Reserved..

The Illusion of Safety

If 3 language is Turing complete, we can always construct a C
machine and execute all the unsafe code

Safety can always be circumvented and often is for
performance or expressibility

'\‘ Adobe 25 © 2023 Adobe. All Rights Reserved..

The Illusion of Safety

If 3 language is Turing complete, we can always construct a C
machine and execute all the unsafe code

Safety can always be circumvented and often is for
performance or expressibility

Safety is defined at a specific level of abstraction; it depends
on how we define "operation”

Safety is a tool for local reasoning

'\‘ Adobe 25 © 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

'\‘ Adobe 26 © 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes

'\‘ Adobe 26 © 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes

* [t will require an explicit safe subset

h‘ Adobe 26 © 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes
* [t will require an explicit safe subset

= There is a necessary shift in the abstraction level

F\\ Adobe 26 © 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

Not without significant changes
* [t will require an explicit safe subset

= There is a necessary shift in the abstraction level

'\‘ Adobe 26 © 2023 Adobe. All Rights Reserved..

0 GGG << << GGG C GGG G
C$ (GGG << < S GGG G G & &
1 G < < < <G GG GG GG
C$ C$ GGG << < < GGG <G G &
O Q<< << << GGG G G <
S GGG G << < <G G G & &
{ S S S SS9 GG G <

Forward

A (New) Possible Future

'\‘ Adobe 28 © 2023 Adobe. All Rights Reserved..

A (New) Possible Future

An extensive library of proven generic components

'\‘ Adobe 28 © 2023 Adobe. All Rights Reserved..

A (New) Possible Future

An extensive library of proven generic components

A small number of non-Turing complete declarative forms for assembling the generic components

F\\ Adobe 28 © 2023 Adobe. All Rights Reserved..

Dafny

method Reverse(a: seg<int>) returns (r: seg<int>)
ensures |a| == |r]|
// ensures forall i :: 0 <= 1 < |a| ==> r[i] == all|a] - i - 1]
{
var remalnder := a;
r = [];
while (]|remainder| > 1)
invariant |remailnder| == |a| - |r]
invariant forall i :: @ <= i < |r| ==> r[i] == al|r| - 1 - 1]
AMAAA” This loop 1nvariant might not be maintained by the loop.

r := [remainder[0]] + r:
remainder := remainder[1..]:

}

r := remalnder + r;

F\\ Adobe 29 © 2023 Adobe. All Rights Reserved..

Bing Chat

"How can | strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?"

h‘ Adobe 30 © 2023 Adobe. All Rights Reserved..

Bing Chat

"How can | strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?”

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here's an example:

'«‘ Adobe 30 © 2023 Adobe. All Rights Reserved..

Bing Chat

"How can | strengthen the loop invariant in the following Dafny code to convince Dafny that the loop
invariant holds?”

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here's an example:

invariant forall i :: @ <= 1 < |remainder| ==> remainder[i] == al|r| + il

'«‘ Adobe 30 © 2023 Adobe. All Rights Reserved..

Bing Chat

"How can | strengthen the loop invariant in the following Dafny code to convince Dafny that the loop

invariant holds?”

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here's an example:

invariant forall i :: @ <= 1 < |remainder| ==> remainder[i] == al|r| + il

This invariant states that for all indices 1 in the rar

ge [0,

of remainderisequaltothe (1 + |r|)-the

F\\ Adobe

| remainder|), the i-th element

ement of a. This ensures that the elements
of remalnder are exactly the elements of a that have not yet been added to r'

30

© 2023 Adobe. All Rights Reserved..

Dafny

method Reverse(a: seg<int>) returns (r: seg<int>)

ensures |a| == |r]

ensures forall 1 :: @ <= 1 < |a| ==> rl[i] == alla] - i - 1]
{

var remainder := a;

r:= [1];
while (]|remainder| > 1)

invariant |remailnder| == |a| - |r]

invariant forall i :: @ <= i < |r| ==> r[i] == al|r| - 1 - 1]

invariant forall i :: @ <= i < |remainder| ==> remainder[i] == al|r| + il
{

r := [remainder([0]] + r;

remainder := remainder([1..];
}
r := remainder + r;

F\\ Adobe 31 © 2023 Adobe. All Rights Reserved..

A (New) Possible Future

A large library of proven generic components

A small number of non-Turing complete declarative forms for assembling the generic components

F\\ Adobe 32 © 2023 Adobe. All Rights Reserved..

A (New) Possible Future

A large library of proven generic components
A small number of non-Turing complete declarative forms for assembling the generic components

Built with Al assisted verification

F\\ Adobe 32 © 2023 Adobe. All Rights Reserved..

Closing

'\‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

'\‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important

Use safety properties so your code doesn't do bad things

h‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important
Use safety properties so your code doesn't do bad things

Use the frame rule to promote security through local
reasoning

h‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important
Use safety properties so your code doesn't do bad things

Use the frame rule to promote security through local
reasoning

Don't lose sight that correctness is the goal

'«‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

Closing

Memory safety is important
Use safety properties so your code doesn't do bad things

Use the frame rule to promote security through local
reasoning

Don't lose sight that correctness is the goal

'\‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

About the artist

MUE Studio

MUE Studio in New York City, a collaboration of
Minjiin Kang and Mijoo Kim, creates visual
experiences through 3D image design and
photography. Drawing inspiration from the
architecture and culture they see around them every
day, the duo strive to blur the boundary between
fantasy and reality in their work. For this piece, they
used Adobe Photoshop and Cinema 4D to build a
dreamlike space that connects emotionally with
viewers and offers them an escape.

Made with

. Adobe Photoshop

Agwor by MUE Studio B i oo
l\ > o> _

