
Algorithms - Preliminaries
Rubric: No Raw Loops

Sean Parent | Sr. Principal Scientist
Manager Software Technology Lab

1

© 2023 Adobe. All Rights Reserved..

Definition

“An Algorithm is a process or set of rules to be followed in
calculations or other problem-solving operations, especially by a

computer.” – New Oxford American Dictionary

2

© 2021 Adobe. All Rights Reserved.

int r = a < b ? a : b;

• What does this line of code do?

A Simple Algorithm

3

© 2021 Adobe. All Rights Reserved.

// r is the minimum of `a` and `b`
int r = a < b ? a : b;

A Simple Algorithm

4

© 2021 Adobe. All Rights Reserved.

int r = min(a, b);

A Simple Algorithm

5

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

• The postconditions for the algorithm must follow from the sequence of statements

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b);

Functions allow us to build a vocabulary focused on semantics.

Minimum

7

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity
• adjectives: empty (ambiguous but used by convention)

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity
• adjectives: empty (ambiguous but used by convention)
• copular constructions: is_blue

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity
• adjectives: empty (ambiguous but used by convention)
• copular constructions: is_blue
• consider a verb if the complexity is greater than expected

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Clarity is of the highest priority. Don't construct unnatural verb phrases

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Clarity is of the highest priority. Don't construct unnatural verb phrases

• intersection(a, b) not calculate_intersection(a, b)

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Clarity is of the highest priority. Don't construct unnatural verb phrases

• intersection(a, b) not calculate_intersection(a, b)

• name() not get_name()

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

sink: the argument is consumed or escaped

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

sink: the argument is consumed or escaped

• T&&, where T is not deduced

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

sink: the argument is consumed or escaped

• T&&, where T is not deduced

• T, For known or expected small types and to avoid forward references

Argument Types

10

© 2021 Adobe. All Rights Reserved.

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

in-out: value_type is not const

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

in-out: value_type is not const

sink: input range

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

in-out: value_type is not const

sink: input range

result: output iterator

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

• Functions with names with unambiguous verbs have in-out arguments

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

• Functions with names with unambiguous verbs have in-out arguments

• All other arguments are let (read-only, copied if escaped)

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

• Functions with names with unambiguous verbs have in-out arguments

• All other arguments are let (read-only, copied if escaped)

• Results of functions with names starting with "alloc," "new," "copy," or "create" are owned solely by
the caller; other results are read-only

Argument Types

12

© 2021 Adobe. All Rights Reserved.

void display(const vector<unique_ptr<widget>>& a) {
 //...

 a[0]->set_name("displayed"); // DO NOT

 //...
}

Argument Types

13

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

• The callee must copy (or move for sink arguments) an argument to retain it after returning

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

• The callee must copy (or move for sink arguments) an argument to retain it after returning

Meaningless objects

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

• The callee must copy (or move for sink arguments) an argument to retain it after returning

Meaningless objects

• A meaningless object should not be passed as an argument (i.e., an invalid pointer).

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);
display(a);

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);
display(a);

{ 1, 0 }

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, int{a[0]});
display(a);

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, int{a[0]});
display(a);

{ 1, 1 }

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

• Example: the reference returned from vector::back()

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

• Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

• Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

A non-trivial algorithm requires iteration

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

• Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

A non-trivial algorithm requires iteration

• iteration may be implemented as a loop or recursion

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

Reasoning About Iteration

18

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

• An invariant that holds at the start and after each iteration

Reasoning About Iteration

18

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

• An invariant that holds at the start and after each iteration

• A finite decreasing property where termination happens when the property is zero

Reasoning About Iteration

18

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

• An invariant that holds at the start and after each iteration

• A finite decreasing property where termination happens when the property is zero

The postcondition of the iteration is the above invariant when the decreasing property reaches zero

Reasoning About Iteration

18

© 2023 Adobe. All Rights Reserved..

Erase

template <class T>
void erase(vector<T>& c, const T& value) {
 c.erase(remove(begin(c), end(c), value), c.end());
}

19

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

20

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, int{a[0]});

20

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

f

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p
b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p
b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;
}

21

0a:

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

22

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);

22

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

f

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

23

a: 🚫

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;

23

a: 🚫

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;
}

23

a: 🚫

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);

24

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);

24

🚫

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

• Open interval (f, l)

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

• Open interval (f, l)

• Half-open interval [f, l)

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

• Open interval (f, l)

• Half-open interval [f, l)

• By strong convention, open on the right

Sequences

25

© 2021 Adobe. All Rights Reserved.

[p, p) represents an empty range at position p

• All empty ranges are not equal

Cannot express the last item in a set with positions of the same set type

• i.e., [INT_MIN, INT_MAX] is not expressible as a half-open interval with type int

Think of the positions as the lines between the elements

Half-Open Intervals

26

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

27

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

28

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

 int a{42};

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

 int a{42};
 copy(&a, &a + 1, ostream_iterator<int>(cout));

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

 int a{42};
 copy(&a, &a + 1, ostream_iterator<int>(cout));
 42

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

• position and sentinel: [f, is_sentinel), i.e. NTBS (C string)

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

• position and sentinel: [f, is_sentinel), i.e. NTBS (C string)

• unbounded: [f, …), limit is dependent on an extrinsic relationship

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

• position and sentinel: [f, is_sentinel), i.e. NTBS (C string)

• unbounded: [f, …), limit is dependent on an extrinsic relationship

• i.e., the range is require to be the same length or greater than another range

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Sorting and heap algorithms

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Sorting and heap algorithms

• Encoding relationships between properties into structural relationships to create structured data

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Sorting and heap algorithms

• Encoding relationships between properties into structural relationships to create structured data

• i.e., a < b implies position(a) < position(b)

Much More

31

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Error prone and likely to fail under non-obvious conditions

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Error prone and likely to fail under non-obvious conditions

Introduce non-obvious performance problems

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Error prone and likely to fail under non-obvious conditions

Introduce non-obvious performance problems

Complicates reasoning about the surrounding code

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

• Give talks

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

∅ Patents

Alternatives to Raw Loops

33

Q & A

34

© 2021 Adobe. All Rights Reserved.

About the artist

Dan Zucco

London-based 3D art and motion director Dan Zucco
creates repeating 2D patterns and brings them to life
as 3D animated loops. Inspired by architecture, music,
modern art, and generative design, he often starts in
Adobe Illustrator and builds his animations using
Adobe After Effects and Cinema 4D. Zucco’s objective
for this piece was to create a geometric design that
felt like it could have an infinite number of
arrangements.

Made with

35

© 2021 Adobe. All Rights Reserved.36

