
Algorithms - Preliminaries
Rubric: No Raw Loops

Sean Parent | Sr. Principal Scientist
Manager Software Technology Lab

1

This talk will be a little tight - so I ask you to hold questions until the end. Slide numbers are provided so you can refer back.

A rubric is "a statement of purpose or function." As part of the Better Code seminar, we provide simple rubrics to help you write Better Code.

© 2023 Adobe. All Rights Reserved..

Definition

“An Algorithm is a process or set of rules to be followed in
calculations or other problem-solving operations, especially by a

computer.” – New Oxford American Dictionary

2

Programming is the construction of algorithms. I often hear, "I don't use or need algorithms." Or "I don't write algorithms." But all coding is the
construction of algorithms. Sometimes working on a large project can feel like "plumbing" - just trying to connect components to make them do
something. But that is creating an algorithm.

Often developers do not understand the algorithm they create.

[clarify how plumbing is creating an algorithm.]

© 2021 Adobe. All Rights Reserved.

int r = a < b ? a : b;

• What does this line of code do?

A Simple Algorithm

3

Consider this line of code <click>
This is not a trick question. <wait for answers>
Are you sure? <pause> When I asked, did you have to think about it and double-check?

© 2021 Adobe. All Rights Reserved.

// r is the minimum of `a` and `b`
int r = a < b ? a : b;

A Simple Algorithm

4

Does a comment help you understand it? Maybe a little?

© 2021 Adobe. All Rights Reserved.

int r = min(a, b);

A Simple Algorithm

5

Is this more clear?

Functions are often ignored but are our most helpful abstraction for constructing software. We frequently focus on type hierarchies and object networks
and ignore the basic function building block. In this talk, we're going to explore functions.

Factoring out simple algorithms can significantly impact readability, even for simple lines of code. A comment is not required where the function is used.

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

Minimum

6

You can write this comment once - or you can write the comment every time you compute the minimum.

Functions name algorithms. The last seminar introduced contracts to specify functions. Postconditions define the semantics or what the function does. Preconditions, not
just the parameter types, define the domain of the operation. Many functions are partial, and the domain of a partial function is the values over which the function is
defined.

Our `min()` function has no preconditions, which is another way of saying the domain of `min()` is the set of values representable by a pair of `int` types.

We state the postcondition in our specification - associating meaning with the name.

We are defining a vocabulary. We should avoid “making up words” and instead use established names within our domain if the semantics of our operation match.

`min()` is a well-established name for the minimum function. This justifies the use of the abbreviation.

Even for a one-line, trivial operation, the name and associated semantics can make the usage easier to reason about.

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

• The postconditions for the algorithm must follow from the sequence of statements

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b);

Functions allow us to build a vocabulary focused on semantics.

Minimum

7

After we have defined our function and are sure it is correct, we no longer have to worry about the implementation.

There is a myth that a limited vocabulary makes code easier to read - but this comes at the expense of limiting the ability to express ideas simply. A NAND gate is very
simple and can describe all computations. But we don't program using only NANDs

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

Naming Functions

8

Follow existing... The C++ standard library has a relatively rich vocabulary. The vocabulary and conventions in languages differ - defer to your language. C++ shouldn't read
like Object Pascal. However, if a language lacks a convention, borrow from another before inventing a new term.

What follows are general recommendations. If your language has different conventions, use them.

Properties... Dictionary definition "an attribute, quality, or characteristic of something." - a non-mutating operation with a single argument.

consider a verb - Example std::list::size(), and adobe::forest::parent().

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity
• adjectives: empty (ambiguous but used by convention)

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity
• adjectives: empty (ambiguous but used by convention)
• copular constructions: is_blue

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

Operations with the same semantics should have the same name

• Follow existing vocabulary and conventions

The name should describe the postconditions and make the use clear

For properties:

• nouns: capacity
• adjectives: empty (ambiguous but used by convention)
• copular constructions: is_blue
• consider a verb if the complexity is greater than expected

Naming Functions

8

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

Naming Functions

9

<end>
Omit needless words.

Naming is hard. Focus on capturing the semantics and how it reads at the call site. When choosing a name, writing down your declaration and looking at it is not enough.
Write usages of the name. Speak the language.

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Clarity is of the highest priority. Don't construct unnatural verb phrases

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Clarity is of the highest priority. Don't construct unnatural verb phrases

• intersection(a, b) not calculate_intersection(a, b)

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

For mutating operations, use a verb:

• verbs: partition

For setting stable, readable properties, with footprint complexity

• Prefix with the verb, set_, i.e. `set_numerator`

Clarity is of the highest priority. Don't construct unnatural verb phrases

• intersection(a, b) not calculate_intersection(a, b)

• name() not get_name()

Naming Functions

9

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

Argument Types

10

[Split this up to be not so C++-centric. With definitions for each term. Maybe a table. Conventions - for construction.]

Three basic ideas in argument passing - this is how they reflect in C++; other languages will have a different mapping.

"Small" is "fits in a register." "Expected" means when used in a template.
Many languages don't have a notion of "sink" - develop or borrow a convention for this use.
Unfortunately, forwarding references have the same syntax as rvalue-references, and disambiguating with enable_if or requires clauses adds too much complexity.
Prefer return values to out arguments; otherwise, treat as inout.
Const in C++ is not transitive - treat it as if it were.

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

sink: the argument is consumed or escaped

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

sink: the argument is consumed or escaped

• T&&, where T is not deduced

Argument Types

10

© 2021 Adobe. All Rights Reserved.

let: the caller's argument is not modified

• const T&
• T, for known or expected small types such as primitive types, iterators, and function objects

in-out: the caller's argument is modified

• T&
• Unless sizeof(T) is significant, prefer a sink argument and result to an in-out argument

sink: the argument is consumed or escaped

• T&&, where T is not deduced

• T, For known or expected small types and to avoid forward references

Argument Types

10

© 2021 Adobe. All Rights Reserved.

Ranges as Arguments

11

[Split this up to be not so C++-centric. With definitions for each term. Maybe a table. Conventions - for construction.]

Three basic ideas in argument passing - this is how they reflect in C++; other languages will have a different mapping.

"Small" is "fits in a register." "Expected" means when used in a template.
Many languages don't have a notion of "sink" - develop or borrow a convention for this use.
Unfortunately, forwarding references have the same syntax as rvalue-references, and disambiguating with enable_if or requires clauses adds too much complexity.
Prefer return values to out arguments; otherwise, treat as inout.
Const in C++ is not transitive - treat it as if it were.

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

in-out: value_type is not const

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

in-out: value_type is not const

sink: input range

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple
argument

let: value_type is const (i.e. vector::const_iterator)

in-out: value_type is not const

sink: input range

result: output iterator

Ranges as Arguments

11

© 2021 Adobe. All Rights Reserved.

Argument Types

12

Pointer types are ambiguous
const doesn't propagate
null vs. non-null
sink vs. not sink

Strengthen shared convention to sink, but if the convention is to copy, follow convention

A C++ proposal (part of TS 2/3) for a const propagating wrapper exists.

I don't have a good suggestion of a function result granting access - "access," "view", ...

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

• Functions with names with unambiguous verbs have in-out arguments

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

• Functions with names with unambiguous verbs have in-out arguments

• All other arguments are let (read-only, copied if escaped)

Argument Types

12

© 2021 Adobe. All Rights Reserved.

Avoid pointer types as arguments

• const doesn't propagate, act as if it does

In reference-semantic languages, use conventions (examples)

• Arguments to "init", "set", and "assign" methods are sink arguments (caller cannot use after invoke)

• Functions with names with unambiguous verbs have in-out arguments

• All other arguments are let (read-only, copied if escaped)

• Results of functions with names starting with "alloc," "new," "copy," or "create" are owned solely by
the caller; other results are read-only

Argument Types

12

© 2021 Adobe. All Rights Reserved.

void display(const vector<unique_ptr<widget>>& a) {
 //...

 a[0]->set_name("displayed"); // DO NOT

 //...
}

Argument Types

13

Don't do this - we'll discuss value semantics more in future seminars, but there is no way to impose transitive const when using reference semantics.

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

Implicit Preconditions

14

Object lifetime can be broken with shared mutable references from shared structures, threads, callbacks, or reentrancy.

The implicit preconditions apply to the arguments passes and to all objects reachable through those arguments. If using reference instead of value semantics, this means
the requirements are _deep_.

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

• The callee must copy (or move for sink arguments) an argument to retain it after returning

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

• The callee must copy (or move for sink arguments) an argument to retain it after returning

Meaningless objects

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Object Lifetimes

• The caller must ensure that referenced arguments are valid for the duration of the call

• The callee must copy (or move for sink arguments) an argument to retain it after returning

Meaningless objects

• A meaningless object should not be passed as an argument (i.e., an invalid pointer).

Implicit Preconditions

14

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

Implicit Preconditions

15

The _Law of Exclusivity_ is borrowed from Swift, and the term was coined by John McCall. C++ does not enforce this rule; it must be manually enforced.

No aliased object under mutation.

The C++ standard library is inconsistent in how it deals with aliasing. Unless aliasing is explicitly allowed, avoid it. Where it is allowed, document (with a comment) any
code relying on the behavior.

Nearly every crash is caused by a violation of these implicit preconditions. dereferencing an invalid pointer, using an object after its lifetime, or aliasing a mutable object.
Take care! This is a strong argument for why Rust or Val.

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);
display(a);

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);
display(a);

{ 1, 0 }

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, int{a[0]});
display(a);

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Law of Exclusivity

• To modify a variable, exclusive access to that variable is required

• This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, int{a[0]});
display(a);

{ 1, 1 }

Implicit Preconditions

15

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

Implicit Postconditions

16

Internal references include pointers, iterators, even indices, etc.
Unless the container docs specifically say the iterator is not invalidated, assume it is. Reliance on a class guarantee for reference stability should be noted in a comment at
the use site.

The reference returned from vector::back is good until the vector is modified or its lifetime ends

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

• Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

• Example: the reference returned from vector::back()

Implicit Postconditions

16

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

Trivial vs Non-Trivial Algorithms

17

iteration and recursion and interchangeable - from now on we will just call it "iteration" but statements apply to both.

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

• Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

• Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

A non-trivial algorithm requires iteration

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

A trivial algorithm does not require iteration

• Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

A non-trivial algorithm requires iteration

• iteration may be implemented as a loop or recursion

Trivial vs Non-Trivial Algorithms

17

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

Reasoning About Iteration

18

A finite decreasing property - there must be a mapping of the loop onto natural numbers. You may not know the numbers - but you must prove the mapping exists and
that the numbers are decreasing.

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

• An invariant that holds at the start and after each iteration

Reasoning About Iteration

18

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

• An invariant that holds at the start and after each iteration

• A finite decreasing property where termination happens when the property is zero

Reasoning About Iteration

18

© 2021 Adobe. All Rights Reserved.

To show that a loop or recursion is correct, we need to demonstrate two things:

• An invariant that holds at the start and after each iteration

• A finite decreasing property where termination happens when the property is zero

The postcondition of the iteration is the above invariant when the decreasing property reaches zero

Reasoning About Iteration

18

© 2023 Adobe. All Rights Reserved..

Erase

template <class T>
void erase(vector<T>& c, const T& value) {
 c.erase(remove(begin(c), end(c), value), c.end());
}

19

We used standard `erase` a moment ago. erase is built using the `remove()` algorithm. If you have tried to roll your code to erase elements from a container, you might
know it can be tricky. Erasing each element going forward gets complex because positions keep moving. Going backward and erasing each element is more straightforward,
but both approaches are quadratic. Let's build the remove algorithm to see how to do it.

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

20

We used `erase` a moment ago. erase is built using the `remove()` algorithm. If you have tried to roll your code to erase elements from a container, you might know it can
be tricky. Erasing each element going forward gets complex because positions keep moving. Going backward and erasing each element is more straightforward, but both
approaches are quadratic. Let's build the remove algorithm to see how to do it.
In order

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, int{a[0]});

20

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

f

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {

21

0a:

[rework - shorter example direct from erase - show erase implementation first. Execute a second time showing the aliasing issue.]

Say "in order" when reading the invariant

[At end, reread the invariant and decreasing]

Because at termination p equals l, it follow that `[f, b)` contains all the values in `[f, l)` not equal to `a`.

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p
b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p
b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;

21

0a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;
}

21

0a:

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

22

We used `erase` a moment ago. erase is built using the `remove()` algorithm. If you have tried to roll your code to erase elements from a container, you might know it can
be tricky. Erasing each element going forward gets complex because positions keep moving. Going backward and erasing each element is more straightforward, but both
approaches are quadratic. Let's build the remove algorithm to see how to do it.
In order

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);

22

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

f

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {

23

a:

Say "in order" when reading the invariant
[after overwriting a - at end of loop] : How is the invariant doing - it is violated!

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p
bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }

23

a:

© 2023 Adobe. All Rights Reserved..

0

0

1

0

1

Remove

p

bf

l

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

bf

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

23

a:

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b
f

l while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

23

a: 🚫

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;

23

a: 🚫

© 2023 Adobe. All Rights Reserved..

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

0

0

1

0

1

Remove

p

b

f

l

 return b;
}

23

a: 🚫

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);

24

We used `erase` a moment ago. erase is built using the `remove()` algorithm. If you have tried to roll your code to erase elements from a container, you might know it can
be tricky. Erasing each element going forward gets complex because positions keep moving. Going backward and erasing each element is more straightforward, but both
approaches are quadratic. Let's build the remove algorithm to see how to do it.
In order

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a` in the original order

 values in `[b, l)` are unspecified
*/

template <forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);

24

🚫

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Sequences

25

Iteration and recursion imply some form of sequencing. It is essential to understand the properties of sequences for reasoning about loops and iterations. The ideas of
sequences extend to multidimensional and numeric algorithms as well. There must existing a mapping to natural numbers for all loops and iterations.

A closed interval cannot represent an empty interval and is missing one position.
An open interval has one extra position. In an open interval, `f` and `l ` cannot be equal. The empty range of discrete elements is (f, f + 1). Open and closed intervals are
mathematic constructs and are most helpful when dealing with continuous values.

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

• Open interval (f, l)

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

• Open interval (f, l)

• Half-open interval [f, l)

Sequences

25

© 2021 Adobe. All Rights Reserved.

For a sequence of n elements, there are n + 1 positions

Ways to represent a range of elements

• Closed interval [f, l]

• Open interval (f, l)

• Half-open interval [f, l)

• By strong convention, open on the right

Sequences

25

© 2021 Adobe. All Rights Reserved.

[p, p) represents an empty range at position p

• All empty ranges are not equal

Cannot express the last item in a set with positions of the same set type

• i.e., [INT_MIN, INT_MAX] is not expressible as a half-open interval with type int

Think of the positions as the lines between the elements

Half-Open Intervals

26

Or fence posts.

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

27

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

28

first and last or begin() and end() are the first and last positions, not the first and last elements.

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

Half-Open Intervals

29

Alex Stepanov (the creator of STL) would like "while first does not equal last" engraved on his tombstone.

[slightly longer pause on code - build for result.]

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

 int a{42};

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

 int a{42};
 copy(&a, &a + 1, ostream_iterator<int>(cout));

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

In this model, there is a symmetry with reverse ranges (l, f]

• The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

Half-open intervals avoid off-by-one errors and confusion about before or after

In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

• Any object can be treated as a range of one element

 int a{42};
 copy(&a, &a + 1, ostream_iterator<int>(cout));
 42

Half-Open Intervals

29

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

Half-Open Intervals

30

Positions could be pointers, iterators, indices...
Null Terminated Byte String

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

• position and sentinel: [f, is_sentinel), i.e. NTBS (C string)

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

• position and sentinel: [f, is_sentinel), i.e. NTBS (C string)

• unbounded: [f, …), limit is dependent on an extrinsic relationship

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Half-open intervals can be represented in a variety of forms

• pair of positions: [f, l)

• position and count: [f, f + n), use _n suffix

• position and predicate: [f, predicate), use _until suffix

• position and sentinel: [f, is_sentinel), i.e. NTBS (C string)

• unbounded: [f, …), limit is dependent on an extrinsic relationship

• i.e., the range is require to be the same length or greater than another range

Half-Open Intervals

30

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Much More

31

Sort maps the relationship
We'll talk more about structured data and relationships in future seminars

[There will be a part 2]

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Sorting and heap algorithms

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Sorting and heap algorithms

• Encoding relationships between properties into structural relationships to create structured data

Much More

31

© 2021 Adobe. All Rights Reserved.

Composing Algorithms

Complexity and efficiency

Sorting and heap algorithms

• Encoding relationships between properties into structural relationships to create structured data

• i.e., a < b implies position(a) < position(b)

Much More

31

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Why No Raw Loops?

32

This brings us back to our rubric

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Error prone and likely to fail under non-obvious conditions

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Error prone and likely to fail under non-obvious conditions

Introduce non-obvious performance problems

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Difficult to reason about and difficult to prove post conditions

Error prone and likely to fail under non-obvious conditions

Introduce non-obvious performance problems

Complicates reasoning about the surrounding code

Why No Raw Loops?

32

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

Alternatives to Raw Loops

33

Most of the standard algorithms have all been machine proven to be correct - this is not Adobe's policy publishing provides the same bonus as a patent
bonus and some legal protections.

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

• Give talks

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

Alternatives to Raw Loops

33

© 2021 Adobe. All Rights Reserved.

Use an existing algorithm

• Prefer standard algorithms if available

Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

∅ Patents

Alternatives to Raw Loops

33

Q & A

34

© 2021 Adobe. All Rights Reserved.

About the artist

Dan Zucco

London-based 3D art and motion director Dan Zucco
creates repeating 2D patterns and brings them to life
as 3D animated loops. Inspired by architecture, music,
modern art, and generative design, he often starts in
Adobe Illustrator and builds his animations using
Adobe After Effects and Cinema 4D. Zucco’s objective
for this piece was to create a geometric design that
felt like it could have an infinite number of
arrangements.

Made with

35

© 2021 Adobe. All Rights Reserved.36

