
Algorithms
Rubric: No Raw Loops

Sean Parent | Sr. Principal Scientist
Manager Software Technology Lab

1

© 2023 Adobe. All Rights Reserved..

Definition

“An Algorithm is a process or set of rules to be followed in
calculations or other problem-solving operations, especially by a

computer.” – New Oxford American Dictionary

2

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

int r = a < b ? a : b;

3

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

int r = a < b ? a : b;

▪ What does this line of code do?

3

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

// r is the minimum of `a` and `b`
int r = a < b ? a : b;

4

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

int r = min(a, b);

5

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

• The postconditions for the algorithm must follow from the sequence of statements

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b);

Functions allow us to build a vocabulary focused on semantics.

Minimum

7

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity
▪ adjectives: empty (ambiguous but used by convention)

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity
▪ adjectives: empty (ambiguous but used by convention)
▪ copular constructions: is_blue

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity
▪ adjectives: empty (ambiguous but used by convention)
▪ copular constructions: is_blue
▪ consider a verb if the complexity is greater than expected

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

▪ Clarity is of the highest priority. Don't construct unnatural verb phrases

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

▪ Clarity is of the highest priority. Don't construct unnatural verb phrases

▪ intersection(a, b) not calculate_intersection(a, b)

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

▪ Clarity is of the highest priority. Don't construct unnatural verb phrases

▪ intersection(a, b) not calculate_intersection(a, b)

▪ name() not get_name()

9

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

▪ in-out: by lvalue-reference

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

▪ in-out: by lvalue-reference

▪ Prefer sink argument and result to in-out arguments

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

▪ in-out: by lvalue-reference

▪ Prefer sink argument and result to in-out arguments

▪ spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple argument.
The value_type of the range determines if it is a let (const) argument or in-out (not const), and input ranges
are used for sink arguments

10

© 2023 Adobe. All Rights Reserved..

Argument Types

void display(const vector<unique_ptr<widget>>& a) {
 //...
 a[0]->set_name("displayed"); // DONT
 //...
}

11

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

▪ The callee must copy (or move for sink arguments) an argument to retain it after returning

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

▪ The callee must copy (or move for sink arguments) an argument to retain it after returning

▪ Meaning value

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

▪ The callee must copy (or move for sink arguments) an argument to retain it after returning

▪ Meaning value

▪ A meaningless object should not be passed as an argument (i.e., an invalid pointer).

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

▪ This applies to in-out and sink arguments and is the caller's responsibility

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

▪ This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);
display(a);

{ 1, 0 }

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

▪ This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, copy(a[0]));
display(a);

{ 1, 1 }

13

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

▪ A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

▪ A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

▪ Example: the reference returned from vector::back()

14

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration

15

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration
▪ Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

15

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration
▪ Examples: swap(), exchange(), min(), max(), clamp(), tolower()...
▪ A non-trivial algorithm requires iteration

15

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration
▪ Examples: swap(), exchange(), min(), max(), clamp(), tolower()...
▪ A non-trivial algorithm requires iteration
▪ iteration may be implemented as a loop or recursion

15

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:
▪ An invariant that holds at the start of the iteration and after each step

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:
▪ An invariant that holds at the start of the iteration and after each step
▪ A finite decreasing property where termination happens when the property is zero

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:
▪ An invariant that holds at the start of the iteration and after each step
▪ A finite decreasing property where termination happens when the property is zero
▪ The postcondition of the iteration is the above invariant when the decreasing property reaches zero

16

© 2023 Adobe. All Rights Reserved..

Remove

17

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a`

 values in `[b, l)` are unspecified
*/

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

17

© 2023 Adobe. All Rights Reserved..

Remove

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {

18

© 2023 Adobe. All Rights Reserved..

Remove

b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};

18

© 2023 Adobe. All Rights Reserved..

Remove

b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

18

© 2023 Adobe. All Rights Reserved..

Remove

pb

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 return b;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 return b;
}

18

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a`

 values in `[b, l)` are unspecified
*/

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

19

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

▪ Open interval (f, l)

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

▪ Open interval (f, l)

▪ Half-open interval [f, l)

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

▪ Open interval (f, l)

▪ Half-open interval [f, l)

▪ By strong convention, open on the right

20

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ [p, p) represents an empty range at position p

▪ All empty ranges are not equal

▪ Cannot express the last item in a set with positions of the same set type

▪ i.e., [INT_MIN, INT_MAX] is not expressible as a half-open interval with type int

▪ Think of the positions as the lines between the elements

21

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

22

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

23

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ In this model, there is a symmetry with reverse ranges (l, f]

▪ The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

▪ Half-open intervals avoid off-by-one errors and confusion about before or after

▪ In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

▪ Any object can be treated as a range of one element

 int a{42};
 copy(&a, &a + 1, ostream_iterator<int>(cout));
 42

24

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

▪ position and sentinel: [f, is_sentinel), i.e. NTBS

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

▪ position and sentinel: [f, is_sentinel), i.e. NTBS

▪ unbounded: [f, …), limit is dependent on an extrinsic relationship

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

▪ position and sentinel: [f, is_sentinel), i.e. NTBS

▪ unbounded: [f, …), limit is dependent on an extrinsic relationship

▪ i.e., the range is require to be the same length or greater than another range

25

© 2023 Adobe. All Rights Reserved..

Gather

26

© 2023 Adobe. All Rights Reserved..

Gather

26

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

27

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

27

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

l

 stable_partition(p, l, s)

28

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

l

 stable_partition(p, l, s)

28

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

f

 stable_partition(f, p, not1(s))

29

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

f

 stable_partition(f, p, not1(s))

29

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

p

l

f

30

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

p

l

f

30

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

31

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };

32

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

/// Gather elements in [f, l) satisfying s at p
/// and returns range containing those elements
/// p is within the result

template <class I, // BidirectionalIterator
 class S> // UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

33

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

/// Gather elements in [f, l) satisfying s at p
/// and returns range containing those elements
/// p is within the result

template <class I, // BidirectionalIterator
 class S> // UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

p

l

f

34

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

/// Gather elements in [f, l) satisfying s at p
/// and returns range containing those elements
/// p is within the result

template <class I, // BidirectionalIterator
 class S> // UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

34

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

l

f

35

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

l

f

35

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

l

f

36

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

l

f

37

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

l

f

37

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

l

f

 stable_partition(f, m, p)

 stable_partition(m, l, p)

37

© 2023 Adobe. All Rights Reserved..

 stable_partition(f, m, p)

 stable_partition(m, l, p)

Composing Algorithms - Stable Partition

m

38

© 2023 Adobe. All Rights Reserved..

 stable_partition(f, m, p)

 stable_partition(m, l, p)

Composing Algorithms - Stable Partition

m

38

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

 rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

38

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

 rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

39

© 2023 Adobe. All Rights Reserved..

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Composing Algorithms - Stable Partition

39

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

r

f
r

40

© 2023 Adobe. All Rights Reserved..

 if (n == 1) return f + p(*f);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Composing Algorithms - Stable Partition

r

f
r

40

© 2023 Adobe. All Rights Reserved..

 if (n == 1) return f + p(*f);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Composing Algorithms - Stable Partition

l

f

41

© 2023 Adobe. All Rights Reserved..

template <class I, // ForwardIterator
 class P> // UnaryPredicate
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

Composing Algorithms - Stable Partition

l

f

41

© 2023 Adobe. All Rights Reserved..

template <class I, // ForwardIterator
 class P> // UnaryPredicate
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

Composing Algorithms - Stable Partition

l

f

41

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

42

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

▪ sorting and heap algorithms

42

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

▪ sorting and heap algorithms

▪ encoding relationships between properties into structural relationships to create structured data

42

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

▪ sorting and heap algorithms

▪ encoding relationships between properties into structural relationships to create structured data

▪ i.e., a < b implies position(a) < position(b)

42

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

43

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

▪ Error prone and likely to fail under non-obvious conditions

43

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

▪ Error prone and likely to fail under non-obvious conditions

▪ Introduce non-obvious performance problems

43

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

▪ Error prone and likely to fail under non-obvious conditions

▪ Introduce non-obvious performance problems

▪ Complicates reasoning about the surrounding code

43

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

• Give talks

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

∅ Patents

44

Q & A

45

© 2023 Adobe. All Rights Reserved..

About the artist

Dan Zucco

London-based 3D art and motion director Dan Zucco
creates repeating 2D patterns and brings them to life
as 3D animated loops. Inspired by architecture, music,
modern art, and generative design, he often starts in
Adobe Illustrator and builds his animations using
Adobe After Effects and Cinema 4D. Zucco’s objective
for this piece was to create a geometric design that
felt like it could have an infinite number of
arrangements.

Made with

46

© 2023 Adobe. All Rights Reserved..47

