
Algorithms
Rubric: No Raw Loops

Sean Parent | Sr. Principal Scientist
Manager Software Technology Lab

1

This talk will be a little tight - and I don't want to spill into a "part 2," so I ask you to hold questions until the end. Slide numbers are provided so you can
refer back.

A rubric is "a statement of purpose or function." As part of the Better Code seminar, we provide simple rubrics to help you write Better Code.

© 2023 Adobe. All Rights Reserved..

Definition

“An Algorithm is a process or set of rules to be followed in
calculations or other problem-solving operations, especially by a

computer.” – New Oxford American Dictionary

2

Programming is the construction of algorithms. I often hear, "I don't use or need algorithms." Or "I don't write algorithms." But all coding is the
construction of algorithms. Sometimes working on a large project can feel like "plumbing" - just trying to connect components to make them do
something. But that is creating an algorithm.

Often developers do not understand the algorithm they create.

[clarify how plumbing is creating an algorithm.]

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

int r = a < b ? a : b;

3

Consider this line of code <click>
This is not a trick question. <wait for answers>
Are you sure? <pause> When I asked, did you have to think about it and double-check?

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

int r = a < b ? a : b;

▪ What does this line of code do?

3

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

// r is the minimum of `a` and `b`
int r = a < b ? a : b;

4

Does a comment help you understand it? Maybe a little?

© 2022 Adobe. All Rights Reserved..

A Simple Algorithm

int r = min(a, b);

5

Is this more clear?

Functions are often ignored but are our most helpful abstraction for constructing software. We frequently focus on type hierarchies and object networks
and ignore the basic function building block. In this talk, we're going to explore functions.

Factoring out simple algorithms can significantly impact readability, even for simple lines of code. A comment is not required where the function is used.

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

Minimum

6

You can write this comment once - or you can write the comment every time you compute the minimum.

Functions name algorithms. The last seminar introduced contracts to specify functions. Postconditions define the semantics or what the function does. Preconditions, not
just the parameter types, define the domain of the operation. Many functions are partial, and the domain of a partial function is the values over which the function is
defined.

Our `min()` function has no preconditions, which is another way of saying the domain of `min()` is the set of values representable by a pair of `int` types.

We state the postcondition in our specification - associating meaning with the name.

We are defining a vocabulary. We should avoid “making up words” and instead use established names within our domain if the semantics of our operation match.

`min()` is a well-established name for the minimum function. This justifies the use of the abbreviation.

Even for a one-line, trivial operation, the name and associated semantics can make the usage easier to reason about.

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b) {
 return a < b ? a : b;
}

When implementing an algorithm, we need to reason through each statement

• The preconditions of each statement must be satisfied by the statements before

• Or implied by the preconditions of the algorithm

• The postconditions for the algorithm must follow from the sequence of statements

Minimum

6

© 2021 Adobe. All Rights Reserved.

/// returns the minimum of `a` and `b`
int min(int a, int b);

Functions allow us to build a vocabulary focused on semantics.

Minimum

7

After we have defined our function and are sure it is correct, we no longer have to worry about the implementation.

There is a myth that a limited vocabulary makes code easier to read - but this comes at the expense of limiting the ability to express ideas simply. A NAND gate is very
simple and can describe all computations. But we don't program using only NANDs

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

8

Follow existing... The C++ standard library has a relatively rich vocabulary. The vocabulary and conventions in languages differ - defer to your language. C++ shouldn't read
like Object Pascal. However, if a language lacks a convention, borrow from another before inventing a new term.

Properties... Dictionary definition "an attribute, quality, or characteristic of something." - a non-mutating operation with a single argument.

consider a verb - Example std::list::size(), and adobe::forest::parent().

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity
▪ adjectives: empty (ambiguous but used by convention)

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity
▪ adjectives: empty (ambiguous but used by convention)
▪ copular constructions: is_blue

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ Operations with the same semantics should have the same name

▪ Follow existing vocabulary and conventions

▪ The name should describe the postconditions and make the use clear

▪ For properties:

▪ nouns: capacity
▪ adjectives: empty (ambiguous but used by convention)
▪ copular constructions: is_blue
▪ consider a verb if the complexity is greater than expected

8

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

9

<end>
Omit needless words.

Naming is hard. Focus on capturing the semantics and how it reads at the call site. When choosing a name, writing down your declaration and looking at it is not enough.
Write usages of the name. Speak the language.

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

▪ Clarity is of the highest priority. Don't construct unnatural verb phrases

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

▪ Clarity is of the highest priority. Don't construct unnatural verb phrases

▪ intersection(a, b) not calculate_intersection(a, b)

9

© 2023 Adobe. All Rights Reserved..

Naming Functions

▪ For mutating operations, use a verb:

▪ verbs: partition

▪ For setting stable, readable properties, with footprint complexity

▪ Prefix with the verb, set_, i.e. `set_numerator`

▪ Clarity is of the highest priority. Don't construct unnatural verb phrases

▪ intersection(a, b) not calculate_intersection(a, b)

▪ name() not get_name()

9

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

10

Three basic ideas in argument passing - this is how they reflect in C++; other languages will have a different mapping.

"Small" is "fits in a register." "Expected" means when used in a template.
Many languages don't have a notion of "sink" - develop or borrow a convention for this use.
Unfortunately, forwarding references have the same syntax as rvalue-references, and disambiguating with enable_if or requires clauses adds too much complexity.
Prefer return values to out arguments; otherwise, treat as inout.
Const in C++ is not transitive - treat it as if it were.

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

▪ in-out: by lvalue-reference

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

▪ in-out: by lvalue-reference

▪ Prefer sink argument and result to in-out arguments

10

© 2023 Adobe. All Rights Reserved..

Argument Types

▪ let: by const-lvalue-reference

▪ For known or expected small types such as primitive types, iterators, and function objects consider by-value

▪ sink: by rvalue-reference

▪ For known or expected small types and to avoid forwarding references consider by-value

▪ in-out: by lvalue-reference

▪ Prefer sink argument and result to in-out arguments

▪ spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple argument.
The value_type of the range determines if it is a let (const) argument or in-out (not const), and input ranges
are used for sink arguments

10

© 2023 Adobe. All Rights Reserved..

Argument Types

void display(const vector<unique_ptr<widget>>& a) {
 //...
 a[0]->set_name("displayed"); // DONT
 //...
}

11

Don't do this - we'll discuss value semantics more in future seminars, but there is no way to impose transitive const when using reference semantics.

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

12

Object lifetime can be broken with shared mutable references from shared structures, threads, callbacks, or reentrancy.

The implicit preconditions apply to the arguments passes and to all objects reachable through those arguments. If using reference instead of value semantics, this means
the requirements are _deep_.

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

▪ The callee must copy (or move for sink arguments) an argument to retain it after returning

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

▪ The callee must copy (or move for sink arguments) an argument to retain it after returning

▪ Meaning value

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Object Lifetimes

▪ The caller must ensure that referenced arguments are valid for the duration of the call

▪ The callee must copy (or move for sink arguments) an argument to retain it after returning

▪ Meaning value

▪ A meaningless object should not be passed as an argument (i.e., an invalid pointer).

12

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

13

The _Law of Exclusivity_ is borrowed from Swift, and the term was coined by John McCall. C++ does not enforce this rule; it must be manually enforced.

No aliased object under mutation.

The C++ standard library is inconsistent in how it deals with aliasing. Unless aliasing is explicitly allowed, avoid it. Where it is allowed, document (with a comment) any
code relying on the behavior.

Nearly every crash is caused by a violation of these implicit preconditions. dereferencing an invalid pointer, using an object after its lifetime, or aliasing a mutable object.
Take care! This is a strong argument for why Rust or Val.

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

▪ This applies to in-out and sink arguments and is the caller's responsibility

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

▪ This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, a[0]);
display(a);

{ 1, 0 }

13

© 2023 Adobe. All Rights Reserved..

Implicit Preconditions

▪ Law of Exclusivity

▪ To modify a variable, exclusive access to that variable is required

▪ This applies to in-out and sink arguments and is the caller's responsibility

vector a{0, 0, 1, 0, 1 };
erase(a, copy(a[0]));
display(a);

{ 1, 1 }

13

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

14

Internal references include pointers, iterators, even indices, etc.
Unless the container docs specifically say the iterator is not invalidated, assume it is. Reliance on a class guarantee for reference stability should be noted in a comment at
the use site.

The reference returned from vector::back is good until the vector is modified or its lifetime ends

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

▪ A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

14

© 2023 Adobe. All Rights Reserved..

Implicit Postconditions

▪ Any internal references to (possibly) remote parts held by the caller to an object are assumed to be
invalided on return from a mutating operation

▪ Part of the Law of Exclusivity

 container<int> a{ 0, 1, 2, 3 };
 auto f = begin(a);
 a.push_back(5);
 // `f` is now invalid and cannot be used

▪ A returned reference must be to one (or a part of one) of the arguments to the function and is valid
until the argument is modified or its lifetime ends

▪ Example: the reference returned from vector::back()

14

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration

15

iteration and recursion and interchangeable - from now on we will just call it "iteration" but statements apply to both.

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration
▪ Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

15

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration
▪ Examples: swap(), exchange(), min(), max(), clamp(), tolower()...
▪ A non-trivial algorithm requires iteration

15

© 2023 Adobe. All Rights Reserved..

Trivial vs Non-Trivial Algorithms

▪ A trivial algorithm does not require iteration
▪ Examples: swap(), exchange(), min(), max(), clamp(), tolower()...
▪ A non-trivial algorithm requires iteration
▪ iteration may be implemented as a loop or recursion

15

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

16

A finite decreasing property - there must be a mapping of the loop onto natural numbers. You may not know the numbers - but you must prove the mapping exists and
that the numbers are decreasing.

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:
▪ An invariant that holds at the start of the iteration and after each step

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:
▪ An invariant that holds at the start of the iteration and after each step
▪ A finite decreasing property where termination happens when the property is zero

16

© 2023 Adobe. All Rights Reserved..

Reasoning About Iteration

▪ To show that a loop or recursion is correct, we need to demonstrate two things:
▪ An invariant that holds at the start of the iteration and after each step
▪ A finite decreasing property where termination happens when the property is zero
▪ The postcondition of the iteration is the above invariant when the decreasing property reaches zero

16

© 2023 Adobe. All Rights Reserved..

Remove

17

We used `erase` a moment ago. erase is built using the `remove()` algorithm. If you have tried to roll your code to erase elements from a container, you might know it can
be tricky. Erasing each element going forward gets complex because positions keep moving. Going backward and erasing each element is more straightforward, but both
approaches are quadratic. Let's build the remove algorithm to see how to do it.
In order

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a`

 values in `[b, l)` are unspecified
*/

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

17

© 2023 Adobe. All Rights Reserved..

Remove

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {

18

Say "in order" when reading the invariant

[At end, reread the invariant and decreasing]

Because at termination p equals l, it follow that `[f, b)` contains all the values in `[f, l)` not equal to `a`.

© 2023 Adobe. All Rights Reserved..

Remove

b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};

18

© 2023 Adobe. All Rights Reserved..

Remove

b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

18

© 2023 Adobe. All Rights Reserved..

Remove

pb

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

18

© 2023 Adobe. All Rights Reserved..

Remove

p
b

f

l

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 while (p != l) {

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 return b;

18

© 2023 Adobe. All Rights Reserved..

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I {
 auto b{find(f, l, a)};
 if (b == l) return b;
 auto p{next(b)};
 // invariant: `[f, b)` contain all the
 // values in `[f, p)` not equal to `a`
 // decreasing: `distance(p, l)`
 while (p != l) {
 if (*p != a) {
 *b = std::move(*p);
 ++b;
 }
 ++p;
 }

Remove

p

b

f

l

 return b;
}

18

© 2023 Adobe. All Rights Reserved..

Remove

/**
 Removes values equal to `a` in the range `[f, l)`.

 \return the position, `b`, such that `[f, b)` contains all the
 values in `[f, l)` not equal to `a`

 values in `[b, l)` are unspecified
*/

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

19

in order

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

20

Iteration and recursion imply some form of sequencing. It is essential to understand the properties of sequences for reasoning about loops and iterations.
A closed interval cannot represent an empty interval and is missing one position.
An open interval has one extra position. In an open interval, `f` and `l ` cannot be equal. The empty range of discrete elements is (f, f + 1). Open and closed intervals are
mathematic constructs and are most helpful when dealing with continuous values.

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

▪ Open interval (f, l)

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

▪ Open interval (f, l)

▪ Half-open interval [f, l)

20

© 2023 Adobe. All Rights Reserved..

Sequences

▪ For a sequence of n elements, there are n + 1 positions

▪ Ways to represent a range of elements

▪ Closed interval [f, l]

▪ Open interval (f, l)

▪ Half-open interval [f, l)

▪ By strong convention, open on the right

20

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ [p, p) represents an empty range at position p

▪ All empty ranges are not equal

▪ Cannot express the last item in a set with positions of the same set type

▪ i.e., [INT_MIN, INT_MAX] is not expressible as a half-open interval with type int

▪ Think of the positions as the lines between the elements

21

Or fence posts.

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

22

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

X
X
X
X
X
X
X

X
X
X

f

l

[f, l)

M
em

ory Addresses

23

first and last or begin() and end() are the first and last positions, not the first and last elements.

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ In this model, there is a symmetry with reverse ranges (l, f]

▪ The dereference operation is asymmetric. dereferencing at a position p is the value in [p, p + 1)

▪ Half-open intervals avoid off-by-one errors and confusion about before or after

▪ In C and C++, half-open intervals are built into the language. For any object, a, &a is a pointer to the
object, and &a + 1 is a valid pointer but may not be dereferenceable.

▪ Any object can be treated as a range of one element

 int a{42};
 copy(&a, &a + 1, ostream_iterator<int>(cout));
 42

24

Alex Stepanov (the creator of STL) would like "while first does not equal last" engraved on his tombstone.

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

25

Positions could be pointers, iterators, indices...

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

▪ position and sentinel: [f, is_sentinel), i.e. NTBS

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

▪ position and sentinel: [f, is_sentinel), i.e. NTBS

▪ unbounded: [f, …), limit is dependent on an extrinsic relationship

25

© 2023 Adobe. All Rights Reserved..

Half-Open Intervals

▪ Half-open intervals can be represented in a variety of forms

▪ pair of positions: [f, l)

▪ position and count: [f, f + n), use _n suffix

▪ position and predicate: [f, predicate), use _until suffix

▪ position and sentinel: [f, is_sentinel), i.e. NTBS

▪ unbounded: [f, …), limit is dependent on an extrinsic relationship

▪ i.e., the range is require to be the same length or greater than another range

25

© 2023 Adobe. All Rights Reserved..

Gather

26

[Need a lead in about why we are composing algorithms. Fix the contracts in this section. Add recursion invariants to stablepartition.]

© 2023 Adobe. All Rights Reserved..

Gather

26

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

27

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

27

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

l

 stable_partition(p, l, s)

28

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

l

 stable_partition(p, l, s)

28

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

f

 stable_partition(f, p, not1(s))

29

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

p

f

 stable_partition(f, p, not1(s))

29

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

p

l

f

30

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

p

l

f

30

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

31

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };

32

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

/// Gather elements in [f, l) satisfying s at p
/// and returns range containing those elements
/// p is within the result

template <class I, // BidirectionalIterator
 class S> // UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

33

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

/// Gather elements in [f, l) satisfying s at p
/// and returns range containing those elements
/// p is within the result

template <class I, // BidirectionalIterator
 class S> // UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

p

l

f

34

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Gather

/// Gather elements in [f, l) satisfying s at p
/// and returns range containing those elements
/// p is within the result

template <class I, // BidirectionalIterator
 class S> // UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

34

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

l

f

35

I presented the gather algorithm at a user group meeting. Jon Kalb commented after that, "it was pretty, but few
algorithms compose like that." But this isn't true - most algorithms are simple compositions of other algorithms. Let's
look at how to implement stable partition

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

l

f

35

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

l

f

36

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

l

f

37

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

l

f

37

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

l

f

 stable_partition(f, m, p)

 stable_partition(m, l, p)

37

© 2023 Adobe. All Rights Reserved..

 stable_partition(f, m, p)

 stable_partition(m, l, p)

Composing Algorithms - Stable Partition

m

38

© 2023 Adobe. All Rights Reserved..

 stable_partition(f, m, p)

 stable_partition(m, l, p)

Composing Algorithms - Stable Partition

m

38

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

m

 rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

38

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

 rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

39

© 2023 Adobe. All Rights Reserved..

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Composing Algorithms - Stable Partition

39

© 2023 Adobe. All Rights Reserved..

Composing Algorithms - Stable Partition

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

r

f
r

40

© 2023 Adobe. All Rights Reserved..

 if (n == 1) return f + p(*f);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Composing Algorithms - Stable Partition

r

f
r

40

© 2023 Adobe. All Rights Reserved..

 if (n == 1) return f + p(*f);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Composing Algorithms - Stable Partition

l

f

41

I did not include a contract here because stable_partition is a standard algorithm, and there wasn't space on the slide.

Interestingly, the predicate is only evaluated once on each element before the element is moved. Then everything is rotated into position.
A stable partition is implemented with rotate(). Rotate is a fascinating algorithm that could fill an hour, but one implementation is three reverses.
Reverse is iterative calls to swap. Many STL algorithms, including stable partition, exist to implement in-place stable sort.

© 2023 Adobe. All Rights Reserved..

template <class I, // ForwardIterator
 class P> // UnaryPredicate
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

Composing Algorithms - Stable Partition

l

f

41

© 2023 Adobe. All Rights Reserved..

template <class I, // ForwardIterator
 class P> // UnaryPredicate
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

Composing Algorithms - Stable Partition

l

f

41

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

42

Sort maps the relationship
We'll talk more about structured data and relationships in future seminars

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

▪ sorting and heap algorithms

42

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

▪ sorting and heap algorithms

▪ encoding relationships between properties into structural relationships to create structured data

42

© 2023 Adobe. All Rights Reserved..

Much More

▪ complexity and efficiency

▪ sorting and heap algorithms

▪ encoding relationships between properties into structural relationships to create structured data

▪ i.e., a < b implies position(a) < position(b)

42

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

43

This brings us back to our rubric

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

▪ Error prone and likely to fail under non-obvious conditions

43

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

▪ Error prone and likely to fail under non-obvious conditions

▪ Introduce non-obvious performance problems

43

© 2023 Adobe. All Rights Reserved..

Why No Raw Loops?

▪ Difficult to reason about and difficult to prove post conditions

▪ Error prone and likely to fail under non-obvious conditions

▪ Introduce non-obvious performance problems

▪ Complicates reasoning about the surrounding code

43

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

44

Most of the standard algorithms have all been machine proven to be correct - this is not Adobe's policy publishing provides the same bonus as a patent
bonus and some legal protections.

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

• Give talks

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

44

© 2023 Adobe. All Rights Reserved..

Alternatives to Raw Loops

• Use an existing algorithm

• Prefer standard algorithms if available

• Implement a known algorithm as a general function

• Contribute it to a library

• Preferably open source

• Invent a new algorithm

• Write a paper

• Give talks

• Become famous!

∅ Patents

44

Q & A

45

© 2023 Adobe. All Rights Reserved..

About the artist

Dan Zucco

London-based 3D art and motion director Dan Zucco
creates repeating 2D patterns and brings them to life
as 3D animated loops. Inspired by architecture, music,
modern art, and generative design, he often starts in
Adobe Illustrator and builds his animations using
Adobe After Effects and Cinema 4D. Zucco’s objective
for this piece was to create a geometric design that
felt like it could have an infinite number of
arrangements.

Made with

46

© 2023 Adobe. All Rights Reserved..47

