

This talk will be a little tight - and I don't want to spill into a "part 2," so I ask you to hold questions until the end. Slide numbers are provided so you can refer back.

A rubric is "a statement of purpose or function." As part of the Better Code seminar, we provide simple rubrics to help you write Better Code.

Definition

"An Algorithm is a process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer." - New Oxford American Dictionary
$1 / 1$ Adobe
2
-2023 Adobe atl Right seeseved.

Programming is the construction of algorithms. I often hear, "I don't use or need algorithms." Or "I don't write algorithms." But all coding is the construction of algorithms. Sometimes working on a large project can feel like "plumbing" - just trying to connect components to make them do something. But that is creating an algorithm.

Often developers do not understand the algorithm they create.
[clarify how plumbing is creating an algorithm.]
A Simple Algorithm
int $r=a<b ? a: b ;$
IAAdobe

Consider this line of code <click>
This is not a trick question. <wait for answers>
Are you sure? <pause> When I asked, did you have to think about it and double-check?

A Simple Algorithm

int $r=a<b$? $a: b ;$

- What does this line of code do?

```
A Simple Algorithm
// r is the minimum of `a` and `b
int r = a < b ? a : b;
\(\mid 1 /\) Adobe
4
-2022 A Adobe All Right Seseeved.
```

Does a comment help you understand it? Maybe a little?
A Simple Algorithm
int $r=\min (a, b)$;
MAAdobe

Is this more clear?

Functions are often ignored but are our most helpful abstraction for constructing software. We frequently focus on type hierarchies and object networks and ignore the basic function building block. In this talk, we're going to explore functions.

Factoring out simple algorithms can significantly impact readability, even for simple lines of code. A comment is not required where the function is used.

```
Minimum
/// returns the minimum of `a` and `b`
int min(int a, int b) {
    return a < b ? a : b;
}

You can write this comment once - or you can write the comment every time you compute the minimum.

Functions name algorithms. The last seminar introduced contracts to specify functions. Postconditions define the semantics or what the function does. Preconditions, not just the parameter types, define the domain of the operation. Many functions are partial, and the domain of a partial function is the values over which the function is defined.

Our `min()` function has no preconditions, which is another way of saying the domain of `min()` is the set of values representable by a pair of int` types.

We state the postcondition in our specification - associating meaning with the name

We are defining a vocabulary. We should avoid "making up words" and instead use established names within our domain if the semantics of our operation match.
\(\min ()^{\prime}\) is a well-established name for the minimum function. This justifies the use of the abbreviation.
Even for a one-line, trivial operation, the name and associated semantics can make the usage easier to reason about.
```

Minimum
/// returns the minimum of `a` and `b`
int min(int a, int b) {
return a < b ? a : b;
}

```

When implementing an algorithm, we need to reason through each statement
```

Minimum
/// returns the minimum of `a` and `b`
int min(int a, int b) {
return a < b ? a : b;
}

```

When implementing an algorithm, we need to reason through each statement
- The preconditions of each statement must be satisfied by the statements before
```

Minimum
/// returns the minimum of `a` and `b`
int min(int a, int b) {
return a < b ? a : b;
}

```

When implementing an algorithm, we need to reason through each statement
- The preconditions of each statement must be satisfied by the statements before
- Or implied by the preconditions of the algorithm

\section*{Minimum}
/// returns the minimum of `a` and `b`
int min(int \(a\), int b) \{ return a < b ? a : b
\}

When implementing an algorithm, we need to reason through each statement
- The preconditions of each statement must be satisfied by the statements before
- Or implied by the preconditions of the algorithm
- The postconditions for the algorithm must follow from the sequence of statements
Minimum
/// returns the minimum of ‘a` and ` \(b\) `
int min(int \(a\), int \(b\) );
Functions allow us to build a vocabulary focused on semantics.
MAAdobe

After we have defined our function and are sure it is correct, we no longer have to worry about the implementation.
There is a myth that a limited vocabulary makes code easier to read - but this comes at the expense of limiting the ability to express ideas simply. A NAND gate is very simple and can describe all computations. But we don't program using only NANDs

\section*{Naming Functions}
- Operations with the same semantics should have the same name
\(1 / 1\) Adobe
8

Follow existing... The C++ standard library has a relatively rich vocabulary. The vocabulary and conventions in languages differ - defer to your language. C++ shouldn't read like Object Pascal. However, if a language lacks a convention, borrow from another before inventing a new term.

Properties... Dictionary definition "an attribute, quality, or characteristic of something." - a non-mutating operation with a single argument.
consider a verb - Example std::list::size(), and adobe::forest::parent().

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions
- The name should describe the postconditions and make the use clear

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions
- The name should describe the postconditions and make the use clear
- For properties:

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions
- The name should describe the postconditions and make the use clear
- For properties:
- nouns: capacity

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions
- The name should describe the postconditions and make the use clear
- For properties:
- nouns: capacity
- adjectives: empty (ambiguous but used by convention)

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions
- The name should describe the postconditions and make the use clear
- For properties:
- nouns: capacity
- adjectives: empty (ambiguous but used by convention)
- copular constructions: is_blue

\section*{Naming Functions}
- Operations with the same semantics should have the same name
- Follow existing vocabulary and conventions
- The name should describe the postconditions and make the use clear
- For properties:
- nouns: capacity
- adjectives: empty (ambiguous but used by convention)
- copular constructions: is_blue
consider a verb if the complexity is greater than expected

\section*{Naming Functions}
- For mutating operations, use a verb
\(1 / 1\) Adobe

Omit needless words.

Naming is hard. Focus on capturing the semantics and how it reads at the call site. When choosing a name, writing down your declaration and looking at it is not enough Write usages of the name. Speak the language.

\section*{Naming Functions}
- For mutating operations, use a verb
- verbs: partition

\section*{Naming Functions}
- For mutating operations, use a verb
- verbs: partition
- For setting stable, readable properties, with footprint complexity

\section*{Naming Functions}
- For mutating operations, use a verb
- verbs: partition
- For setting stable, readable properties, with footprint complexity
- Prefix with the verb, set_, i.e. `set_numerator`

\section*{Naming Functions}
- For mutating operations, use a verb
- verbs: partition
- For setting stable, readable properties, with footprint complexity
- Prefix with the verb, set_, i.e. `set_numerator`
- Clarity is of the highest priority. Don't construct unnatural verb phrases

\section*{Naming Functions}
- For mutating operations, use a verb
- verbs: partition
- For setting stable, readable properties, with footprint complexity
- Prefix with the verb, set_, i.e. `set_numerator`
- Clarity is of the highest priority. Don't construct unnatural verb phrases
- intersection(a, b) not calculate_intersection(a, b)

\section*{Naming Functions}
- For mutating operations, use a verb
- verbs: partition
- For setting stable, readable properties, with footprint complexity
- Prefix with the verb, set_, i.e. `set_numerator`
- Clarity is of the highest priority. Don't construct unnatural verb phrases
- intersection(a, b) not calculate_intersection(a, b)
- name() not get_name()

\section*{Argument Types}
- let: by const-lvalue-reference

Three basic ideas in argument passing - this is how they reflect in \(\mathrm{C}++\); other languages will have a different mapping.
"Small" is "fits in a register." "Expected" means when used in a template.
Many languages don't have a notion of "sink" - develop or borrow a convention for this use.
Unfortunately, forwarding references have the same syntax as rvalue-references, and disambiguating with enable_if or requires clauses adds too much complexity. Prefer return values to out arguments; otherwise, treat as inout.
Const in \(\mathrm{C}++\) is not transitive - treat it as if it were.

\section*{Argument Types}
- let: by const-lvalue-reference
- For known or expected small types such as primitive types, iterators, and function objects consider by-value

\section*{Argument Types}
- let: by const-lvalue-reference
- For known or expected small types such as primitive types, iterators, and function objects consider by-value
- sink: by rvalue-reference

\section*{Argument Types}
- let: by const-lvalue-reference
- For known or expected small types such as primitive types, iterators, and function objects consider by-value
- sink: by rvalue-reference
- For known or expected small types and to avoid forwarding references consider by-value

\section*{Argument Types}
- let: by const-lvalue-reference
- For known or expected small types such as primitive types, iterators, and function objects consider by-value
- sink: by rvalue-reference
- For known or expected small types and to avoid forwarding references consider by-value
- in-out: by lvalue-reference

\section*{Argument Types}
- let: by const-lvalue-reference
- For known or expected small types such as primitive types, iterators, and function objects consider by-value
- sink: by rvalue-reference
- For known or expected small types and to avoid forwarding references consider by-value
- in-out: by lvalue-reference
- Prefer sink argument and result to in-out arguments

\section*{Argument Types}
- let: by const-lvalue-reference
- For known or expected small types such as primitive types, iterators, and function objects consider by-value
- sink: by rvalue-reference
- For known or expected small types and to avoid forwarding references consider by-value
- in-out: by lvalue-reference
- Prefer sink argument and result to in-out arguments
- spans, views, iterator pairs, and so on are a way to pass a range of objects as if they were a simple argument. The value_type of the range determines if it is a let (const) argument or in-out (not const), and input ranges are used for sink arguments
```

Argument Types
void display(const vector<unique_ptr<widget>>\& a) {
//...
a[0]->set_name("displayed"); // DONT
//..
}
$1 / 1$ Adobe
11

```

Don't do this - we'll discuss value semantics more in future seminars, but there is no way to impose transitive const when using reference semantics.

\section*{Implicit Preconditions}
- Object Lifetimes
\(1 / 1\) Adobe
12

Object lifetime can be broken with shared mutable references from shared structures, threads, callbacks, or reentrancy.
The implicit preconditions apply to the arguments passes and to all objects reachable through those arguments. If using reference instead of value semantics, this means the requirements are _deep_

\section*{Implicit Preconditions}
- Object Lifetimes
- The caller must ensure that referenced arguments are valid for the duration of the call

\section*{Implicit Preconditions}
- Object Lifetimes
- The caller must ensure that referenced arguments are valid for the duration of the call
- The callee must copy (or move for sink arguments) an argument to retain it after returning

\section*{Implicit Preconditions}
- Object Lifetimes
- The caller must ensure that referenced arguments are valid for the duration of the call
- The callee must copy (or move for sink arguments) an argument to retain it after returning
- Meaning value

\section*{Implicit Preconditions}
- Object Lifetimes
- The caller must ensure that referenced arguments are valid for the duration of the call
- The callee must copy (or move for sink arguments) an argument to retain it after returning
- Meaning value
- A meaningless object should not be passed as an argument (i.e., an invalid pointer).

\section*{Implicit Preconditions}
- Law of Exclusivity
/ 1 Adobe
13
2023 Adobe atl Rithts Resered.

The _Law of Exclusivity_ is borrowed from Swift, and the term was coined by John McCall. C++ does not enforce this rule; it must be manually enforced.
No aliased object under mutation.
The C++ standard library is inconsistent in how it deals with aliasing. Unless aliasing is explicitly allowed, avoid it. Where it is allowed, document (with a comment) any code relying on the behavior.

Nearly every crash is caused by a violation of these implicit preconditions. dereferencing an invalid pointer, using an object after its lifetime, or aliasing a mutable object. Take care! This is a strong argument for why Rust or Val.

\section*{Implicit Preconditions}
- Law of Exclusivity
- To modify a variable, exclusive access to that variable is required

\section*{Implicit Preconditions}
- Law of Exclusivity
- To modify a variable, exclusive access to that variable is required
- This applies to in-out and sink arguments and is the caller's responsibility

\section*{Implicit Preconditions}
- Law of Exclusivity
- To modify a variable, exclusive access to that variable is required
- This applies to in-out and sink arguments and is the caller's responsibility
vector a\{0, 0, 1, 0, 1 \};
erase(a, a[0]);
display(a)
\{ 1, 0 \}
\(1 / 1\) Adobe

\section*{Implicit Preconditions}
- Law of Exclusivity
- To modify a variable, exclusive access to that variable is required
- This applies to in-out and sink arguments and is the caller's responsibility
vector a\{0, 0, 1, 0, 1\(\}\);
erase(a, copy(a[0]));
display(a);
\(\{1,1\}\)

\section*{Implicit Postconditions}
- Any internal references to (possibly) remote parts held by the caller to an object are assumed to be invalided on return from a mutating operation
\(1 / 1\) Adobe
14

Internal references include pointers, iterators, even indices, etc.
Unless the container docs specifically say the iterator is not invalidated, assume it is. Reliance on a class guarantee for reference stability should be noted in a comment at the use site.

The reference returned from vector::back is good until the vector is modified or its lifetime ends

\section*{Implicit Postconditions}
- Any internal references to (possibly) remote parts held by the caller to an object are assumed to be invalided on return from a mutating operation
- Part of the Law of Exclusivity

\section*{Implicit Postconditions}
- Any internal references to (possibly) remote parts held by the caller to an object are assumed to be invalided on return from a mutating operation
- Part of the Law of Exclusivity
container<int> a\{ 0, 1, 2, 3 \};
auto \(f=\) begin(a);
a.push_back(5);
//'f'is now invalid and cannot be used

\section*{Implicit Postconditions}
- Any internal references to (possibly) remote parts held by the caller to an object are assumed to be invalided on return from a mutating operation
- Part of the Law of Exclusivity
container<int> a\{ 0, 1, 2, 3 \};
auto f = begin(a);
a.push_back(5);
//'f' is now invalid and cannot be used
- A returned reference must be to one (or a part of one) of the arguments to the function and is valid until the argument is modified or its lifetime ends

\section*{Implicit Postconditions}
- Any internal references to (possibly) remote parts held by the caller to an object are assumed to be invalided on return from a mutating operation
- Part of the Law of Exclusivity
container<int> a\{ 0, 1, 2, 3 \};
auto f = begin(a);
a.push_back(5);
//'f' is now invalid and cannot be used
- A returned reference must be to one (or a part of one) of the arguments to the function and is valid until the argument is modified or its lifetime ends
- Example: the reference returned from vector: : back()

\section*{Trivial vs Non-Trivial Algorithms}
- A trivial algorithm does not require iteration
\(1 / 1\) Adobe

Trivial vs Non-Trivial Algorithms
- A trivial algorithm does not require iteration
- Examples: swap(), exchange(), min(), max(), clamp(), tolower()...

\section*{Trivial vs Non-Trivial Algorithms}
- A trivial algorithm does not require iteration
- Examples: swap(), exchange(), min(), max(), clamp(), tolower()..
- A non-trivial algorithm requires iteration

\section*{Trivial vs Non-Trivial Algorithms}
- A trivial algorithm does not require iteration
- Examples: swap(), exchange(), min(), max(), clamp(), tolower()..
- A non-trivial algorithm requires iteration
- iteration may be implemented as a loop or recursion

\section*{Reasoning About Iteration}
| 1 A Adobe
16
O2023 Adobe All Rightr Reserved.

A finite decreasing property - there must be a mapping of the loop onto natural numbers. You may not know the numbers - but you must prove the mapping exists and that the numbers are decreasing.

\section*{Reasoning About Iteration}
- To show that a loop or recursion is correct, we need to demonstrate two things:

\section*{Reasoning About Iteration}
- To show that a loop or recursion is correct, we need to demonstrate two things:
- An invariant that holds at the start of the iteration and after each step

\section*{Reasoning About Iteration}
- To show that a loop or recursion is correct, we need to demonstrate two things:
- An invariant that holds at the start of the iteration and after each step
- A finite decreasing property where termination happens when the property is zero

\section*{Reasoning About Iteration}
- To show that a loop or recursion is correct, we need to demonstrate two things:
- An invariant that holds at the start of the iteration and after each step
- A finite decreasing property where termination happens when the property is zero
- The postcondition of the iteration is the above invariant when the decreasing property reaches zero
Remove

We used `erase` a moment ago. erase is built using the `remove()` algorithm. If you have tried to roll your code to erase elements from a container, you might know it can be tricky. Erasing each element going forward gets complex because positions keep moving. Going backward and erasing each element is more straightforward, but both approaches are quadratic. Let's build the remove algorithm to see how to do it.
In order
```

Remove
/**
Removes values equal to `a` in the range `[f, l)`.
\return the position, `b`, such that `[f, b)` contains all the
values in `[f, l)` not equal to `a`
values in `[b, l)` are unspecified
*/
template <std::forward iterator I, class T>
auto remove(I f, I l, const T\& a) -> I;

Say "in order" when reading the invariant
[At end, reread the invariant and decreasing]
Because at termination p equals I, it follow that `\([f, b)^{\prime}\) contains all the values in` $[f, I)^{\prime}$ not equal to `a`.

Remove
template <std: : forward_iterator I, class T>
auto remove(I f, I l, const $T \&$ a) $\rightarrow I\{$
auto b\{find(f, l, a)\};

Remove

template <std: :forward_iterator I, class T>
auto remove(I f, I l, const T\& a) $\rightarrow \mathrm{I}\{$
auto b\{find(f, l, a)\};
if ($b==1$) return b;

Remove

template <std: :forward_iterator I, class T>
auto remove(I f, I l, const T\& a) $\rightarrow \mathrm{I}\{$
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) -> I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: ‘[f, b)` contain all the

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) -> I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: ‘[f, b)' contain all the
// values in `[f, p)` not equal to `a`

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`// decreasing:`distance(p, l)

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\},
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a’
// decreasing: ‘distance(p, l)
while (p != l) \{

Remove

template <std: :forward_iterator I, class T>
auto remove(I f, I l, const T\& a) $\rightarrow \mathrm{I}\{$
auto $b\{f i n d(f, l, a)\}$;
if (b == l) return b;
auto p\{next(b)\};
// invariant: '[f, b) contain all the
// values in '[f, p)' not equal to 'a`// decreasing:`distance(p, l)
while (p ! = 〕) \{
if (*p != a) \{

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) -> I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: ‘[f, b)`contain all the // values in`[f, p)`not equal to`a`// decreasing:`distance(p, l)
while (p ! $=\mathrm{l}$) \{
if (*p != a)
*b = std::move(*p)

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) $\rightarrow \mathrm{I}$ \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while (p != l) \{
if (*p != a) \{
*b = std::move(*p);
$++b ;$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b) contain all the
// values in '[f, p)' not equal to 'a`// decreasing:`distance(p, l)
while ($\mathrm{p} \quad!=\mathrm{l})$ \{
if (*p != a) \{
*b = std::move(*p):
++b;
\}
$++p ;$

Remove

template <std::forward_iterator I, class T> auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: ‘[f, b)`contain all the // values in`[f, p)`not equal to`a`// decreasing:`distance(p, l)’
while ($\mathrm{p} \quad \mathrm{l}=\mathrm{l})$ \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
$++p ;$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a
// decreasing: ‘distance(p, l)
while (p != l) \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
$++p ;$
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($\mathrm{p}!=\mathrm{l}$) \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
$++p ;$
\}

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) $\rightarrow \mathrm{I}$ \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($\mathrm{p}!=\mathrm{l}$) \{
if (*p != a) \{
*b = std::move(*p);
\}
$++p ;$
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a
// decreasing: ‘distance(p, l)
while ($\mathrm{p}!=\mathrm{l}$) \{
if (*p != a) \{
*b = std::move(*p);
$++b ;$
$\}$
$++p$
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\}
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($\mathrm{p}!=\mathrm{l}$) \{
if (*p != a) \{
*b = std::move(*p);
++ ;
\}
++p;
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: $[f, b)$ contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($p \quad!=1)$ \{
if (*p != a) \{
*b $=$ std::move(*p);
++b;
\}
$++p ;$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a
// decreasing: ‘distance(p, l)
while (p != l) \{
if (*p != a) \&
*b = std::move(*p);
++b;
\}
$++p ;$
\}

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($\mathrm{p}!=$ l) \{
if (*p != a) \{
*b = std::move(*p)
++b;
\}
$++p ;$
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($\mathrm{p}!=$ l) \{
if (*p != a) \{
*b = std::move(*p);
\}
$++p ;$
\}

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`// decreasing:`distance(p, l)
while ($\mathrm{p}!=\mathrm{l}$) \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $\mathrm{p}\{$ next $(\mathrm{b})\}$;
// invariant: '[f, b)' contain all the
// values in `[f, p)` not equal to `a`
// decreasing: ‘distance(p, l)
while ($\mathrm{p} \quad \mathrm{l}=\mathrm{l})$ \{
if (*p != a) \{
*b = std::move(*p);
++ ;
\}
++p;
$\}$

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) $\rightarrow \mathrm{I}$ \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: ‘distance(p, l)
while ($p \quad!=1$) \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
++p;

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`
// decreasing: 'distance(p, l)
while (p != l) \{
if (*p != a) \&
*b = std::move(*p);
++b;
\}
$++p ;$
\}

Remove

$4-1=$
template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: $[f, b)$ contain all the
// values in '[f, p)' not equal to 'a
// decreasing: `distance(p, l)
while ($\mathrm{p} \quad \mathrm{l}=\mathrm{l})$ \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
) $++p$;

Remove

$\div l=$
template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: ' [f, b)' contain all the
// values in `[f, p)' not equal to 'a`
// decreasing: `distance(p, l)
while (p != l) \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
\}
return b;

Remove

template <std::forward_iterator I, class T>
auto remove(I f, I l, const T\& a) \rightarrow I \{
auto b\{find(f, l, a)\};
if (b == l) return b;
auto $p\{n e x t(b)\}$;
// invariant: '[f, b)' contain all the
// values in '[f, p)' not equal to 'a`// decreasing:`distance(p, l)
while ($\mathrm{p}!=\mathrm{l}$) \{
if (*p != a) \{
*b = std::move(*p);
++b;
\}
$\}$
return b
$\}$

```
Remove
/**
    Removes values equal to `a` in the range `[f, l)`.
    \return the position, `b`, such that `[f, b)` contains all the
        values in `[f, l)` not equal to `a`
    values in `[b, l)` are unspecified
*/
template <std::forward iterator I, class T>
auto remove(I f, I l, const T& a) -> I;

\section*{Sequences}
- For a sequence of \(n\) elements, there are \(n+1\) positions
\(1 / 1\) Adobe
20

Iteration and recursion imply some form of sequencing. It is essential to understand the properties of sequences for reasoning about loops and iterations. A closed interval cannot represent an empty interval and is missing one position.
An open interval has one extra position. In an open interval, ' \(f\) ' and ' cannot be equal. The empty range of discrete elements is ( \(f, f+1\) ). Open and closed intervals are mathematic constructs and are most helpful when dealing with continuous values.

\section*{Sequences}
- For a sequence of \(n\) elements, there are \(n+1\) positions
- Ways to represent a range of elements

Sequences
- For a sequence of \(n\) elements, there are \(n+1\) positions
- Ways to represent a range of elements
- Closed interval [f, l]

Sequences
- For a sequence of \(n\) elements, there are \(n+1\) positions
- Ways to represent a range of elements
- Closed interval [f, l]
- Open interval (f, l)

Sequences
- For a sequence of \(n\) elements, there are \(n+1\) positions
- Ways to represent a range of elements
- Closed interval [f, l]
- Open interval ( \(\mathrm{f}, \mathrm{l}\) )
- Half-open interval [f, l)

Sequences
- For a sequence of \(n\) elements, there are \(n+1\) positions
- Ways to represent a range of elements
- Closed interval [f, l]
- Open interval (f, l)
- Half-open interval [f, l)
- By strong convention, open on the right

\section*{Half-Open Intervals}
- \([p, p)\) represents an empty range at position \(p\)
- All empty ranges are not equal
- Cannot express the last item in a set with positions of the same set type
- i.e., [INT_MIN, INT_MAX] is not expressible as a half-open interval with type int
- Think of the positions as the lines between the elements
\(1 / 1\) Adobe

Half-Open Intervals


\section*{Half-Open Intervals}


\section*{Half-Open Intervals}
- In this model, there is a symmetry with reverse ranges ( \(l, f]\)
- The dereference operation is asymmetric. dereferencing at a position \(p\) is the value in \([p, p+1)\)
- Half-open intervals avoid off-by-one errors and confusion about before or ofter
- In C and C++, half-open intervals are built into the language. For any object, \(a, \& a\) is a pointer to the object, and \&a + 1 is a valid pointer but may not be dereferenceable.
- Any object can be treated as a range of one element
int a\{42\};
copy(\&a, \&a + 1, ostream_iterator<int>(cout)); 42
\(1 / 1\) Adobe
24

Alex Stepanov (the creator of STL) would like "while first does not equal last" engraved on his tombstone.

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms
- pair of positions: [f,l)

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms
- pair of positions: \([f, l)\)
- position and count: [f, \(f+n\) ), use _n suffix

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms
- pair of positions: [f,l)
- position and count: \([f, f+n)\), use _n suffix
- position and predicate: [f, predicate), use _until suffix

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms
- pair of positions: \([f, l)\)
- position and count: \([f, f+n)\), use _n suffix
- position and predicate: [f, predicote), use _until suffix
- position and sentinel: [f, is_sentinel), i.e. NTBS

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms
- pair of positions: [f,l)
- position and count: [f, \(f+n\) ), use _n suffix
- position and predicate: [f, predicate), use _until suffix
- position and sentinel: [f, is_sentinel), i.e. NTBS
- unbounded: [f, ...), limit is dependent on an extrinsic relationship

\section*{Half-Open Intervals}
- Half-open intervals can be represented in a variety of forms
- pair of positions: [f,l)
- position and count: [f, \(f+n\) ), use _n suffix
- position and predicate: [f, predicate), use _until suffix
- position and sentinel: [f, is_sentinel), i.e. NTBS
- unbounded: [f, ...), limit is dependent on an extrinsic relationship
- i.e., the range is require to be the same length or greater than another range

\section*{Gather}


\section*{Gather}


1 Adobe


stable_partition(p, l, s)

stable_partition(p, l, s)

Composing Algorithms - Gather

stable_partition(f, p, not1(s))

Composing Algorithms - Gather

stable_partition(f, p, not1(s))

Composing Algorithms - Gather

stable_partition(f, p, not1(s)) stable_partition(p, l, s)

Composing Algorithms - Gather

stable_partition(f, p, not1(s)) stable_partition(p, l, s)

Composing Algorithms - Gather

stable_partition(f, p, not1(s)) stable_partition(p, l, s)

Composing Algorithms - Gather

return \{ stable_partition(f, p, not1(s)), stable_partition(p, l, s) \};

\section*{Composing Algorithms - Gather}

/// Gather elements in [f, l) satisfying s at p /// and returns range containing those elements /// p is within the result
template <class I, // BidirectionalIterator class S> // UnaryPredicate auto gather(I f, I l, I p, S s) \(\rightarrow\) pair \(<I, I>\) \{
return \{ stable_partition(f, p, not1(s)), stable_partition(p, l, s) \};
\}

\section*{Composing Algorithms - Gather}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multirow{7}{*}{-p-} & /// Gather elements in [f, l) satisfying s at /// and returns range containing those elements \\
\hline & /// p is within the result \\
\hline & template <class I, // Bidirectionaliterator \\
\hline & class S> // UnaryPredicate \\
\hline & auto gather(I f, I l, I p, S s) -> pair<I, \\
\hline & ```
return { stable_partition(f, p, not1(s)),
    stable_partition(p, l, s) };
``` \\
\hline & \} \\
\hline & 34 \\
\hline
\end{tabular}

\section*{Composing Algorithms - Gather}

/// Gather elements in [f, l) satisfying s at p /// and returns range containing those elements /// p is within the result
template <class I, // BidirectionalIterator class S> // UnaryPredicate auto gather(I f, I l, I p, S s) \(\rightarrow\) pair \(<I, I>\) \{
return \{ stable_partition(f, p, not1(s)), stable_partition(p, l, s) \};
\}

\(|1|\) Adobe
35
O2023 Adobe All Right Resesved.

I presented the gather algorithm at a user group meeting. Jon Kalb commented after that, "it was pretty, but few algorithms compose like that." But this isn't true - most algorithms are simple compositions of other algorithms. Let's look at how to implement stable partition

Composing Algorithms - Stable Partition

stable_partition(f, m, p)
stable_partition(m, l, p)

Composing Algorithms - Stable Partition

stable_partition(f, m, p)
stable_partition(m, l, p)

Composing Algorithms - Stable Partition

stable_partition(f, m, p)
stable_partition(m, l, p)

Composing Algorithms - Stable Partition

\(1 / 1\) Adobe
rotate(stable_partition(f, m, p),
m,
stable_partition(m, l, p));

38
O2023 Atobo e All Rights Reseeved.

Composing Algorithms - Stable Partition

iA Adobe
rotate(stable_partition(f, m, p),
m,
stable_partition(m, l, p));

39

Composing Algorithms - Stable Partition

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, l, p));

39

Composing Algorithms - Stable Partition

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, l, p));
| 1 A Adobe

Composing Algorithms - Stable Partition

\section*{Composing Algorithms - Stable Partition}

\(1 / 1\) Adobe
41

I did not include a contract here because stable_partition is a standard algorithm, and there wasn't space on the slide.
Interestingly, the predicate is only evaluated once on each element before the element is moved. Then everything is rotated into position. A stable partition is implemented with rotate(). Rotate is a fascinating algorithm that could fill an hour, but one implementation is three reverses. Reverse is iterative calls to swap. Many STL algorithms, including stable partition, exist to implement in-place stable sort.

\section*{Composing Algorithms - Stable Partition}

template <class I, // ForwardIterator
class P> // UnaryPredicate
auto stable_partition(I f, I l, P p) \(\rightarrow\) I
\{
auto \(n=1-f\);
if (\(\mathrm{n}==0\)) return f;
if (\(n=1\)) return \(f+p(* f)\);
auto m = f + (n / 2);
return rotate(stable_partition(f, m, p), m,
stable_partition(m, l, p));
\}
\(1 / 1\) Adobe

\section*{Composing Algorithms - Stable Partition}

template <class I, // ForwardIterator
class P> // UnaryPredicate
auto stable_partition(I f, I l, P p) \(\rightarrow\) I
\{
auto \(n=1-f\);
if (n == 0) return f;
if (\(n=1\)) return \(f+p(* f)\);
auto m = f + (n / 2);
return rotate(stable_partition(f, m, p), m,
stable_partition(m, l, p));
\}

\section*{Much More}
- complexity and efficiency

We'll talk more about structured data and relationships in future seminars

\section*{Much More}
- complexity and efficiency
- sorting and heap algorithms

\section*{Much More}
- complexity and efficiency
- sorting and heap algorithms
- encoding relationships between properties into structural relationships to create structured dato

\section*{Much More}
- complexity and efficiency
- sorting and heap algorithms
- encoding relationships between properties into structural relationships to create structured data
- i.e., \(a<b\) implies position(a) < position(b)

\section*{Why No Raw Loops?}
- Difficult to reason about and difficult to prove post conditions
\(1 / 1\) Adobe
43
-2023 Adobe all Rigits Resened.

This brings us back to our rubric

\section*{Why No Raw Loops?}
- Difficult to reason about and difficult to prove post conditions
- Error prone and likely to fail under non-obvious conditions

\section*{Why No Raw Loops?}
- Difficult to reason about and difficult to prove post conditions
- Error prone and likely to fail under non-obvious conditions
- Introduce non-obvious performance problems

\section*{Why No Raw Loops?}
- Difficult to reason about and difficult to prove post conditions
- Error prone and likely to fail under non-obvious conditions
- Introduce non-obvious performance problems
- Complicates reasoning about the surrounding code
Alternatives to Raw Loops
. Use an existing algorithm
MAAdobe

Most of the standard algorithms have all been machine proven to be correct - this is not Adobe's policy publishing provides the same bonus as a patent bonus and some legal protections.

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library
- Preferably open source

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library
- Preferably open source
- Invent a new algorithm

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library
- Preferably open source
- Invent a new algorithm
- Write a paper

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library
- Preferably open source
- Invent a new algorithm
- Write a paper
- Give talks

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library
- Preferably open source
- Invent a new algorithm
- Write a paper
- Give talks
- Become famous!

\section*{Alternatives to Raw Loops}
- Use an existing algorithm
- Prefer standard algorithms if available
- Implement a known algorithm as a general function
- Contribute it to a library
- Preferably open source
- Invent a new algorithm
(patents
- Write a paper
- Give talks
- Become famous!


```

