All the Safeties

Sean Parent

@

h‘ All the Safeties
Adobe

Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

Be

Artwork by MUE Studio

Why Talk About Safety?

; National Security Agency Cybersecurity Information Sheet

F\\ Adobe

2 = T B OGS = N0 3
@ ® 338 ®d 5 3 o a4 X &

a o — o
® =S =
< o S

Future of Memory Safety

Challenges and Recommendations

YAEL GRAUER
JANUARY 2023

CRReports ’ E‘ Security Planner

'70 percent of their vulnerabilities were due to
memory sdfety issues”

"NSA recommends using a memory sdfe language
when possible.”

"Even when organizations put significant

effort and resources into detecting, fixing, and
mitigating this class of bugs, memory unsafety
continues to represent the majority of high-severity
security vulnerabilities and stability issues.”

3 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

"Cybersecurity is essential to the basic functioning of
NATIONAL our economy, the operation of our critical

CYBERSECURITY infrastructure, the strength or our democracy and
STRATEGY o

democratic institutions, the privacy of our data and
communications, and our national defense.”

MARCH 2023

F\\ Adobe 4 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

Pillar Three | Shape Market Forces to Drive Security
and Resilience

Strategic Objective 3.1: Hold the Stewards of Our Data
NATIONAL Accountable

CYBERSECURITY = | o S
STRATEGY Strategic Objective 3.3: Shift Liability for Insecure

B Software Products and Services

Strategic Objective 3.5: Leverage Federal Procurement
to Improve Accountability

F\\ Adobe 5 © 2023 Adobe. All Rights Reserved..

Why Talk About Safety?

F\\ Adobe

EUROPEAN
COMMISSION

Brussels, 15.9.2022
COM(2022) 454 final
2022/0272 (COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

(Text with EEA relevance)

{SEC(2022) 321 final} - {SWD(2022) 282 final} - {SWD(2022) 283 final}

EN EN

"It is necessary to improve the functioning of the
internal market by laying down a uniform legal
framework for essential cybersecurity requirements for
placing products with digital elements on the Union

market.”

© 2023 Adobe. All Rights Reserved..

What is Memory Safety?

"Memory safety is a broad category of issues related to how a program
manages memory.”
- NSA, Software Memory Safety

F\\ Adobe 7 © 2023 Adobe. All Rights Reserved..

What is Memory Safety? |
"Memory safety is the property of a program

where memory pointers used always point to valid

"Memory safety is the state of being memory"

protected from various software

bugs and security vulnerabilities when ".we define a program as being fully memory safe if
dealing with memory access, such it satisfies the following criteria: it never reads

as Puﬁef overflows and dangling uninitialized memory, performs no illegal operations
pointers.” on the heap (no invalid/double frees), and does not

access freed memory (no dangling pointer errors).”
I L
Race condition - concurrent reads/

writes to shared memory "Memory safety is a term used by software and

security engineers to describe applications that
access the operating system's memory in a way
that doesn't cause errors.”

"Unwanted aliasing - when the same
memory location is allocated and modified
twice for unrelated purposes.”

F\\ Adobe 8 © 2023 Adobe. All Rights Reserved.

What is Safety?

safe-ty ["safte]
NOUN
1. the condition of being protected from or unlikely to cause
danger, risk, or injury
- Oxford Languages

F\\ Adobe) © 2023 Adobe. All Rights Reserved..

What are Safety Properties?

F\\ Adobe

To prove the correctness of a program, one must prove two
essentially different types of properties about it, which we
call safety and liveness properties.

A safety property is one which states that something will not
happen.

A liveness property is one which states that something must
happen.

— Leslie Lamport, Proving the Correctness of
Multiprocess Programs

10

© 2023 Adobe. All Rights Reserved..

What are Safety Properties?

= Safety properties compose

= If every common execution prefix satisfies P then the program satisfies P

h‘ Adobe 11 © 2023 Adobe. All Rights Reserved..

Example Safety Property for Self Driving Car

» The car cannot drive off the road

= A safe operation does not allow the car to drive off the
road*

= |f all operations are safe, the car cannot drive off the road*

*Assuming the preconditions are not violated

'\‘ Adobe 12 © 2023 Adobe. All Rights Reserved..

Example Liveness Property for Self Driving Car

= The car will eventually reach its destination

» This may be achieved by a series of stepwise refinements

'\‘ Adobe 13 © 2023 Adobe. All Rights Reserved..

Safety in terms of Safety Properties

= The safety of a program is a set of properties that cannot happen given valid input.

'\‘ Adobe 14 © 2023 Adobe. All Rights Reserved..

Safety of a Programming Language

= The safety of a programming language is a set of safety properties guaranteed for any expressible
program.

= Every program that can be written in the language (or a safe subset of the language) satisfies the
safety properties of the language.

F\\ Adobe 15 © 2023 Adobe. All Rights Reserved..

Achieving Safety in a Language

= limiting expressibility - the language cannot express code which would violate the safety property.
= runtime validation - the program prevents unsafe violation by resulting in an error or termination

= defined results - the program defines safe behavior of otherwise unsafe operations

F\\ Adobe 16 © 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

= The language has no operations that access memory
= which is not allocated
= has not been initialized

» has been released

'\‘ Adobe 17 © 2023 Adobe. All Rights Reserved..

What's the Problem?

= A secure system is a system where the resources are used and accessed as intended under all
circumstances

 Any software defect may violate the security of a system
= Language safety can aid security by:
» Assisting in the construction of correct software and finding defects sooner
= Limiting the effect a defect may exhibit including limiting access to other parts of the system

= A key property of a secure system is noninterference

= The noninterference property holds if and only it any sequence of low inputs will produce the same
low outputs, regardless of what the high level inputs are.

'\‘ Adobe 18 © 2023 Adobe. All Rights Reserved..

What is a Memory Safe Language?

The Meaning of Memory Safety

= frame rule: A veritied program can only effect a well-
defined portion of the state, with all other memory
regions left untouched.

Arthur Azevedo de Amorim!, Citilin Hritcu?, and Benjamin C. Pierce®

! Carnegie Mellon University
* Inria Paris
% University of Pennsylvania

* Inspired by separation logic and local reasoning

our characerization, we evaluate the scurity of a previously proposed dynamic
monitor for memory safety of heap-allocaied data.

1 Introduction

= Shows that this frame rule satisfies the noninterference
property

Memory safety, and the vulnerabilities that follow from its absence [43], are common
concerns. So what is it, exactly? Intuitions abound, but translating them into satisfying
formal de finitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal, everyday
intuition assigns, in discussions of memory safety, to a range of errors related to memory
misuse—buffer overruns, double frees, etc. Characterizing memory safety in erms of
the absence of these errors is tempting, but this falls short for two reasons. First, there is
ofien disagreement on which behaviors qualify as errors. Forexample, many real-world
C programs intentionally rely on unmstricted pointer arithmetic [28], though it may
y#eld undefined behavior according to the language standard [21, §6.5.6]. Second, from
the perspective of security, the critical issue is not the errors themselves, but rather the
fact that, when they occur in unsafe languages like C, the program’s ensuing behavior
is determined by obscure, low-level factors such as the compiler’s choice of run-time
memory layout, often leading to exploitable vulnerabilities. By contrast, in memory-
safe languages like Java, programs can attempt to access arrays out of bounds, but such
mistakes lead to sensible, predictable outcomes.

Rather than atempting a definition in terms of bad things that cannot happen, we

The frame rule relates to John McCall's Law of S T R T e
Exclusivity from Swift

arXiv:1705.07354v3 J

h‘ Adobe 19 © 2023 Adobe. All Rights Reserved..

on memory safety and the masoning principles they sapport. As an application of [

Memory Safety in C++

= Shared mutable references make memory safety nearly
impossible

= Sanitizers can help

= But at a performance cost, which often rules them out
for production code

* |If not used in production, sanitizers should be combined
with fuzzers

* No safety properties hold in the presence of UB

'\‘ Adobe 20 © 2023 Adobe. All Rights Reserved..

"Understanding why software fails is important, but the real
challenge is understanding why software works’

— Alexander Stepanov

'\‘ Adobe 21 © 2023 Adobe. All Rights Reserved..

The Illusion of Safety

= If 3 language is Turing complete we can always construct 3
C machine and execute all the unsafe code

= Safety can always be circumvented, and often is for
performance or expressibility

= Safety is tool for local reasoning

'\‘ Adobe 22 © 2023 Adobe. All Rights Reserved..

Can C++ be Memory Safe?

= Not without significant changes
= Will require an explicit safe subset

= There is a required shift in the abstraction level

'\‘ Adobe 23 © 2023 Adobe. All Rights Reserved..

0 GGG << << GGG C GGG G
C$ (GGG << < S GGG G G & &
1 G < < < <G GG GG GG
C$ C$ GGG << < < GGG <G G &
O Q<< << << GGG G G <
S GGG G << < <G G G & &
{ S S S S QG QQ <9< <G G <

Direction

C++Now What?

= Consider a higher level memory-safe(ish) language where performance isn't critical
* For performance critical components, Rust

= But.. no specification, single source tool chain, and poor C++ interoperability

F\\ Adobe 25 © 2023 Adobe. All Rights Reserved..

Professors? Grad students?

* |'d like to see an undergrad course on the practical construction of correct software
= Design by Contract
= Safety Properties
* Local and Equational Reasoning
* The Whole/Part Relationship
* Frame Rule (Law of Exclusivity)

= Error Handling

F\\ Adobe 26 © 2023 Adobe. All Rights Reserved..

Better Code

= Rubric: No raw synchronization primitives

= Mutexes

h‘ Adobe 27 © 2023 Adobe. All Rights Reserved..

Mutexes

Note 21: It can be shown that programs that correctly use mutexes and memory_order ::

seq_cst operations to prevent all data races and use no other synchronizatio
the operations execL

computation of a
normally referrec

— end note]

F\\ Adobe

10

to

N operations behave as if

ted by their constituent threads were simply interleavec

bject being taken from the last side effect on that object

, with each value
in that interleaving. This is

as "'sequential consistency”. However, this applies only to data-race-free programes,
and data-race-free programs cannot observe most program transformations
threaded program semantics. In fact, most single-threaded program transformations continue to be
allowed, since any program that behaves differently as a result has undefined behavior.

28

that do not change single-

— The C++ Standard

© 2023 Adobe. All Rights Reserved..

Mutexes

|Note 21: It can be shown that programs that correctly use mutexes and memory_order ::

seq_cst operations to prevent all data races and use no other synchronization operations behave as if
the operations executed by their constituent threads were simply interleaved, with each value
computation of an object being taken from the last side effect on that object in that interleaving. This is
normally referred to as "sequential consistency”. However, this applies only to data-race-free programes,
and data-race-free programs cannot observe most program transformations that do not change single-
threaded program semantics. In fact, most single-threaded program transformations continue to be
allowed, since any program that behaves differently as a result has undefined behavior.

— end note]

— The C++ Standard

'\‘ Adobe 29 © 2023 Adobe. All Rights Reserved..

Safety Properties of Mutexes

= Assists

 No Race Conditions

'\‘ Adobe 30 © 2023 Adobe. All Rights Reserved..

Safety Properties of Mutexes

= Assists
. NoF it
* Hinders

 No Deadlocks

* Invoking a mutex, while satisfying all preconditions, may deadlock

F\\ Adobe 31 © 2023 Adobe. All Rights Reserved..

Safe Alternative to Mutex

= Serial Queue
= Faster - non-blocking, no forced context switch

= Non-trivial transformation - requires restructuring code, often with continuations

F\\ Adobe 32 © 2023 Adobe. All Rights Reserved..

Better Code

= Rubric: No raw pointers

« Shared Pointers

'\‘ Adobe 33 © 2023 Adobe. All Rights Reserved..

Safety Properties of Shared Pointers

= Assists
= Object Lifetime

* No Memory Leaks

'\‘ Adobe 34 © 2023 Adobe. All Rights Reserved..

Safety Properties of Shared Pointers

= Assists
= Object Lifetime
* Ne-Memory-teaks
* Hinders
* No Memory Leaks
= No Race Conditions
= No Observation of Broken Class Invariants

= Noninterference Principal - Violation of Frame Rule

h‘ Adobe 35 © 2023 Adobe. All Rights Reserved..

Safe Alternative to Shared Pointer

= (Mutable) Value Semantics and Whole/Part relationships
= Easier to reason about

= Requires difficult code transformations

h‘ Adobe 36 © 2023 Adobe. All Rights Reserved..

Better Code

= Rubric: No raw loops

= while, do, for

'\‘ Adobe 37 © 2023 Adobe. All Rights Reserved..

Safety Properties of Loops

= Assists
* Hinders

= Termination

= Time Constraint
 Bounds

= Noninterference Principal - Violation of Frame Rule

h‘ Adobe 38 © 2023 Adobe. All Rights Reserved..

Safe Alternative to Raw Loops

= Algorithms
= Easier to reason about, faster

 No downside

'\‘ Adobe 39 © 2023 Adobe. All Rights Reserved..

0 GGG << << GGG C GGG G
C$ (GGG << < S GGG G G & &
1 G < < < <G GG GG GG
C$ C$ GGG << < < GGG <G G &
O Q<< << << GGG G G <
S GGG G << < <G G G & &
{ S S S SS9 GG G <

Forward

A (New) Possible Future

* A large library of proven generic components

= A small number of non-Turing complete declarative forms for assembling the generic components

F\\ Adobe 41 © 2023 Adobe. All Rights Reserved..

Dafny

method Reverse(a: seg<int>) returns (r: seg<int>)
ensures |a| == |r]|
// ensures forall i :: 0 <= 1 < |a| ==> r[i] == alla] - i - 1]
{
var remalnder := a;
r = [];
while (|remainder| > 1)
invariant |remailnder| == |a| - |r]
invariant forall i :: @ <= i < |r| ==> r[i] == al|r| - 1 - 1]
AMAAA” This loop 1nvariant might not be maintained by the loop.

r := [remainder[0]] + r:
remainder := remainder[1..]:

}

r := remalnder + r;

F\\ Adobe 42 © 2023 Adobe. All Rights Reserved..

Bing Chat

"How can | strengthen the loop invariant in the following Dafny code to convince Dafny that the loop

invariant holds?”

"You could add an invariant that ensures that the elements of remainder are the same as the
elements of a that have not yet been added to r. Here's an example:

invariant forall i :: @ <= 1 < |remainder| ==> remainder[i] == al|r| + il

This invariant states that for all indices 1 in the rar

ge [0,

of remainderisequaltothe (i + |r|)-the

F\\ Adobe

| remainder|), the i-th element

ement of a. This ensures that the elements
of remainder are exactly the elements of a that have not yet been added to r."

43

© 2023 Adobe. All Rights Reserved..

Dafny

method Reverse(a: seg<int>) returns (r: seg<int>)

ensures |a| == |r]

ensures forall 1 :: @ <= 1 < |a| ==> rl[i] == alla] - i - 1]
{

var remainder := a;

r:= [1];
while (|remainder| > 1)

invariant |remailnder| == |a| - |r]

invariant forall i :: @ <= i < |r| ==> r[i] == al|r| - 1 - 1]

invariant forall i :: @ <= i < |remainder| ==> remainder[i] == al|r| + il
{

r := [remainder([0]] + r;

remainder := remainder([1..];
}
r := remainder + r;

F\\ Adobe 44 © 2023 Adobe. All Rights Reserved..

A (New) Possible Future

* A large library of proven generic components
= A small number of non-Turing complete declarative forms for assembling the generic components

= Built with Al assisted verification

F\\ Adobe 45 © 2023 Adobe. All Rights Reserved..

Closing

* Memory safety is important

= Use safety properties so your code doesn't do bad things

= Don't lose sight that correctness is the goal

F\\ Adobe 46

© 2023 Adobe. All Rights Reserved..

About the artist

MUE Studio

MUE Studio in New York City, a collaboration of
Minjiin Kang and Mijoo Kim, creates visual
experiences through 3D image design and
photography. Drawing inspiration from the
architecture and culture they see around them every
day, the duo strive to blur the boundary between
fantasy and reality in their work. For this piece, they
used Adobe Photoshop and Cinema 4D to build a
dreamlike space that connects emotionally with
viewers and offers them an escape.

Made with

. Adobe Photoshop

Agwor by MUE Studio B i oo
l\ > o> _

