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‘A novice sees only the chessmen.
An amateur sees the board.
A master sees the game.
— Unknown




‘Computer scientists are bad at

relationships.’
- Me
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Relations in Math

= Arelation is a set of ordered pairs mapping entities from a domain to a range

= Distinct from a function in that the first entity does not uniquely determine the second

A relationship is the way two entities are connected

{(z0,y0), (z1,41), (2,92), ...}




Predicates

- Arelation implies a corresponding predicate that tests it a pair exists in the relation
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= John is married to Jane




Predicates

- Arelation implies a corresponding predicate that tests it a pair exists in the relation

- Ifitis true, the relationship is satisfied or holds

= John is married to Jane

= |s John married to Jane?




Constraints

= A constraint is a relationship which must be satisfied
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Constraints

= A constraint is a relationship which must be satisfied

* For another relationship to be satisfied




Constraints

= A constraint is a relationship which must be satisfied

* For another relationship to be satisfied

= The denominator must not be O for the result of division to be defined




Implication

a=>b
(a implies b)




Implication

a=>b

(a implies b) 0 0 1
0 1 1
1 0 0




A simple, but incomplete, notation

- Entities are represented with a rectangle, and relationships with a circle

= This forms a bipartite graph

Entity

R Entity

Entity




A simple notation

* Implication is represented with directional edges

* This is shorthand for given entities b and ¢, a is any entity such that R holds

* Read as, b and cimply a
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Relationships and Objects

= As soon as we have two entities we have implicit relationships
= A memory space Is an entity

= When an object is copied or moved, any relationship that object was involved in is either
maintained or severed with respect to the destination object

- When an object is destructed, any relationship that object was involved in is severed
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= As an object, a witnessed relationship is copyable and equality comparable

* When an object is copied or moved, any witnessed relationship that object was involved in is
either maintained, severed, or invalidated with respect to the destination object
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Witnessed Relationships

= A witnessed relationship is a relationship represented by an object
= As an object, a witnessed relationship is copyable and equality comparable

* When an object is copied or moved, any witnessed relationship that object was involved in is
either maintained, severed, or invalidated with respect to the destination object

= This includes copying or moving the object witnessing the relationship

= When an object is destructed, any witnessed relationship that object was involved in is either
severed, or invalidated.

= We may choose not to implement copy or move for witnessed relationships

= This is how we get iterator invalidation “at a distance”
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A structure on a set consists of
additional entities that, in some
manner, relate to the set,
endowing the collection with
meaning or significance.

——









0100

























[ hash( ) != hash( ) ]

(0100

(0011




[hayy)]
(0100

(0011




Memory Space
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Safety

= An object instance, without meaning, is invalid
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= An object in an invalid state, must either be restored to a valid state, or destroyed
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Safety

= An object instance, without meaning, is invalid

= An object in an invalid state, must either be restored to a valid state, or destroyed

This is related to the idea of a partially formed object

= An operation which leaves an object in an invalid state is unsafe

* std: :move () isan unsafe operation




C+4+20
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C+4+20

= Two new features specifically about relationships
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= Two new features specifically about relationships

= Concepts
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C+4+20

= Two new features specifically about relationships
= Concepts

= Contracts
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C+4+20

- FwoeOne new features specifically about relationships

= Concepts
- ontradts
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Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Keywords: Generic programming, operator semantics, concept, regular type.

Abstract. Generic  programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces. Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers. We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science 1 9 9 8
(LNCS) volume 1766. See http://www.springer.de/comp/Incs/index.html .
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"We call the set of axioms satisfied
Dy 3 data type and a set of
operations on it a concept’




"We call the set of axioms satistied
Dy 3 data type and a set of
operations on it a concept’
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An Axiomatic Basis for
Computer Programming

C. A. R. Hoare
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming’
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation

CR CATEGORY: 4.0, 4,21, 4,22, 5.20, 5.21, 5.23, 5.24

1. Introduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in prineiple,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all eurrent procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Science

276 Communications of the ACM

of axioms it is possible to deduee such simple theorems as:
r=x+y X0
y<ror+yXg=@r—y)+yX([1+gq)
The proof of the second of these is:
A5 (r=y)+y X (1+4q)
={r—y)+ WX1+yXgq)

A9 =({r—y)+ (y+y Xgq)
A3 = (r—y)+y)+yXgqg
A6 =r+y X q provided y < r

The axioms Al to A9 are, of eourse, true of the tradi-
tional infinite set of integers in mathematies. However,
they are also true of the finite sets of “integers” which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow oceurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are striet, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table II by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al0; —3zVy (y < z),
where all finite arithmeties satisfy:
Al0, Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (xr=max+ 1) (strict interpretation )

Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deduecing the properties of programs; however,

Volume 12 / Number 10 / October, 1969

1969
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of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetie familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set
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It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al10; —3axVy (y < z),
where all finite arithmeties satisfy:
Al0, Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (xr=max+ 1) (strict interpretation )

Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deduecing the properties of programs; however,
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Equality

= Two objects are equal iff their values correspond to the same entity
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Equality

= Two objects are equal iff their values correspond to the same entity

- From this definition we can derive the following properties:

(Va)a = a. (Reflexivity)
(Va,b)a =b= b= a. (Symmetry)
(Va,b,c)a=bANb=c=a=c. (Transitivity)




Concepts

= Axioms follow from the definition
- A collection of connected axioms form an algebraic structure

= Connected type requirements form a concept

© 2019 Adobe. All Rights Reserved.




Copy and Assignment

« Properties of copy and assignment:
b—a=a=10 (copies are equal)
a=b=cNd#a,d—>a=a#bANb=c (copies are disjoint)

= Copy Is connected to equality




Natural Total Order

= The natural total order is a total order that respects the other fundamental operations of the
type
- Atotal order has the following properties:

(Va, b)exactly one of the following holds:

a<b,b<a,ora=>. (Trichotomy)
(Va,b,c)a <bANb<c=a<ec. (Transitivity)




Natural Total Order

= Example: Integer < is consistent with addition.

(VneZ)n < (n+1).




Concepts

- Quantified axioms are (generally) not actionable

- Concepts in C++20 work by associating semantics with the name of an operation
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Software is defined on Algebraic Structures
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Applying “Design by
Contract”

Bertrand Mevyer

Interactive Software Engineering

WA Ty Pl a1
Reliability is even more
important in object-
oriented programming
than elsewhere. This
article shows how to
reduce bugs by building
software components
on the basis of carefully
designed contracts.

40

s object-onented techniques steadily gain ground in the world of software
development, users and prospective users of these technmiques are clam-
oring more and more loudly for a "methodology”™ of object-oriented
software construction — or at least for some methodological guidelines. This
article presents such guidelines, whose main goal is to help improve the reliability
of software systems. Reliability is here defined as the combmation of correciness
and robustness or. more prosaically, as the absence of bugs
Everyone developing software systems, or just using them, knows how pressing
this question of reliability is in the current state of sofiware enginecring. Yet the
rapidly growing literature on object-oriented analysis, design, and programming
includes remarkably few contributions on how to make object-oriented software
more reliable. This is surprising and regrettable, since at least three reasons justily
devoting particular attention to reliability in the context of object-oriented devel-
opment:

e The cornerstone of object-oriented technology is reuse. For reusable compo-
nents, which may be used in thousands of different applications, the potential
consequences of incorrect behavior are even more serious than for apphication
specific developments.

¢ Proponents of object-oriented methods make strong claims about their bene-
ficial effect on software quality. Rehability is certainly a central component ol
any reasonable definition of quality as apphed to sofltware.

e The object-oriented approach, based on the theory of abstract data types,
provides a particularly appropriate framework for discussing and enforcing
rehiability

The pragmatic techniques presented in this article, while certainly not providing
infallible ways to guarantee reliability, may help considerably toward this goal
Fhey rely on the theory of design by contract, which underlies the design of the
Eiffel analysis, design, and programming language' and of the supporting libranes,
from which a number of examples will be drawn.

Ihe contributions of the work reported below include

e u coherent set of methodological principles helping to produce correct and
robust soltware:

® i systematic approach to the delicate problem of how to deal with abnormal
cases, leading to a simple and powerful exception-handling mechanism: and

T RN ST IR s erd (‘()\‘Pl 'r[{R

1986 (original)
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Reliability is even more
important in object-
oriented programming
than elsewhere. This
article shows how to
reduce bugs by building
software components
on the basis of carefully
designed contracts.
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* The cornerstone of object-oriented technology is reuse. For reusable compo-
nents, which may be used in thousands of different applications, the potential
consequences of incorrect behavior are even more serious than for apphication-
specific developments.

¢ Proponents of object-oriented methods make strong claims about their bene-
ficial effect on software quality. Reliability is certainly a central component of
any reasonable definition of quality as apphed 1o sofliware.

* The object-oriented approach, based on the theory of abstract data types,
provides a particularly appropriate framework for discussing and enforcing
rehiability.

The pragmatic techniques presented in this article, while certainly not providing
infallible ways to guarantee reliability, may help considerably toward this goal.
Fhey rely on the theory of design by contract, which underlies the design of the
Eiffel analysis, design, and programming language' and of the supporting libraries,
from which a number of examples will be drawn,

The contributions of the work reported below include

o u coherent set of methodological principles helping to produce correct and
robust soltware;

® o systematic approach to the delicate problem of how to deal with abnormal
cases, leading to a simple and powerful exception-handling mechanism: and
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of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetie familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set
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It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al10; —3axVy (y < z),
where all finite arithmeties satisfy:
Al0, Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (xr=max+ 1) (strict interpretation )

Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deduecing the properties of programs; however,
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Contracts

= Originally part of the Eiffel language
- Contracts allow the specification of constraints
« Preconditions (require)

- Postconditions (ensure)

= (lass Invariants




Contracts

= Contracts are actionable predicates on values
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'In some cases, one might want to use
quantified expressions of the form "For
all x of type T, p(x) holds” or “There exists
x of type T, such that p(x) holds,” where p
S 3 certain Boolean property. Such
expressions are not available in Eiffel.

——



Concepts and Contracts

= Concepts describe relationships between operations on a type

- Contracts describe relationships between values

= The distinction is not always clear

* le. The comparison ope
relation over the values

ation passed to std: : sort must implement a strict weak ordering

being sorted



Pattern Matching
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Pattern Matching

= Concepts are used as a compile time constraint to select an appropriate operation
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Pattern Matching

= Concepts are used as a com

Dile time constraint to select an appropriate operation

= Contracts assert at runtime 1
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- Contracts assert at runtime if an operations preconditions are not met

= A runtime constraint to select an appropriate operation is known as pattern matching
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Pattern Matching

= Concepts are used as a compile time constraint to select an appropriate operation

- Contracts assert at runtime if an operations preconditions are not met

= A runtime constraint to select an appropriate operation is known as pattern matching

void f(auto i) requires requires 1 !(1 < @) }




Pattern Matching

= Concepts are used as a compile time constraint to select an appropriate operation

- Contracts assert at runtime if an operations preconditions are not met

= A runtime constraint to select an appropriate operation is known as pattern matching

void f(auto i) requires requires 1 !(1 < @) }
void f(int i) [[expects !(i < 0)]]




Pattern Matching

= Concepts are used as a compile time constraint to select an appropriate operation

- Contracts assert at runtime if an operations preconditions are not met

= A runtime constraint to select an appropriate operation is known as pattern matching

void f(auto i) requires requires 1 !(1 < @) }
void f(int i) [[expects !(i < 0)]]
void f(int i) requires !'(i < @) // Not yet in C++.




Whole-Part Relationships and Composite Objects

Elements of Programming, Chapter 12
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Whole-Part Relationships and Composite Objects

Part A
* Connected

Part B

Part C

Elements of Programming, Chapter 12

© 2019 Adobe. All Rights Reserved. "‘

Adobe



Whole-Part Relationships and Composite Objects

Part A
= Connected
N , l Part B
ondclrcutlar _A‘i,
Part C
\_ ]

Elements of Programming, Chapter 12

© 2019 Adobe. All Rights Reserved. "‘

Adobe
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* Connected

= Noncircular

Elements of Programming, Chapter 12
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Whole-Part Relationships and Composite Objects

Part A Part A
= Connected

Part B Part B’

= Noncircular IR I
: ... i» Part C <_f_
* Logically Disjoint

Elements of Programming, Chapter 12
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Part A Part A

* Connected

Part B Part B’

= Noncircular

* Logically Disjoint

Elements of Programming, Chapter 12
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Whole-Part Relationships and Composite Objects

Part A
* Connected

Part B

= Noncircular RN e U
* Logically Disjoint

* Owning
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Part C

Elements of Programming, Chapter 12
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* Owning
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Whole-Part Relationships and Composite Objects

Part A
* Connected

Part B

= Noncircular RN e U
* Logically Disjoint

* Owning
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Whole-Part Relationships and Composite Objects

* Connected
= Noncircular
* Logically Disjoint

* Owning

* Standard Containers are Composite ODb;

Part A

Part B

ects

* Composite objects allow us to reason a

© 2019 Adobe. All Rights Reserved.

Part C

bout 3 collection of objects as a single entity

Elements of Programming, Chapter 12
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No Incidental Data Structures

class view {
std::1list<std::shared ptr<view>> children;
std: :weak ptr<view> parent;

Y
}i
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No Incidental Data Structures

adobe: : forest<view>
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No Incidental Data Structures
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No Raw Loops

// Next, check 1f the panel has moved to the other side of another panel.
const int center_x = fixed_panel->cur_panel_center();
for (size t i = 0; i < expanded panels .size(); ++i) {
Panelx panel = expanded panels [i].get();
if (center_x <= panel->cur_panel_center() ||
1 == expanded _panels .size() - 1) {
if (panel '= fixed_panel) {
// If 1t has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded panels_.erase(expanded panels .begin() + fixed_index);
if (i < expanded panels .size()) {
expanded panels_.insert(expanded panels .begin() + i, ref);
} else {
expanded panels_.push_back(ref);
}
}
break;
}
}
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std: :rotate(p, £, £ + 1);
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Task

- After the application has been idle for at least n seconds do something

extern system clock::time point 1last idle;

void 1invoke after(system clock::duration, function<void()>);

template <class F> // F 1is task of the form void()
volid after idle(F task, system clock::duration delay) ({
auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {

invoke after(when, [=]{ after idle(task, delay); });
} else {

task();

}
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Task

- After the application has been idle for at least n seconds do something

extern system clock::time point 1last idle;
volid invoke after(system clock::duration, function<void()>);

/////
4‘/

lllll

template <class F> // F 1is task of the form void()
volid after idle(F task, system clock::duration delay) ({
auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {

invoke after(when, [=]{ after idle(task, delay); });
} else {

task();

}
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Task

- After the application has been idle for at least n seconds do something

extern system clock::time point 1last idle;
volid invoke after(system clock::duration, function<void()>);

template <class F> // F 1is task of the form void()
void after idle(F task, system clock::duration delay) {

auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {

- invoke after(when, [=]{ after idle(task, delay); });
} else {
task();
}
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Task

- After the application has been idle for at least n seconds do something

extern system clock::time point 1last idle;
volid invoke after(system clock::duration, function<void()>);

template <class F> // F 1is task of the form void()
void after idle(F task, system clock::duration delay) {

auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {

invoke after(when, [=]{ after idle(task, delay); });

} else {
task();

// y
_

}

© 2019 Adobe. All Rights Reserved.




Task

- After the application has been idle for at least n seconds do something

extern system clock::time point 1last idle;
volid invoke after(system clock::duration, function<void()>);

template <class F> // F 1is task of the form void()
volid after idle(F task, system clock::duration delay) ({
auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {
invoke after(when, [=]{ after idle(task, delay); });
} else {
- task();

,,,,, }
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Task

- After the application has been idle for at least n seconds do something

extern system clock::time point 1last idle;
volid invoke after(system clock::duration, function<void()>);

template <class F> // F 1is task of the form void()
volid after idle(F task, system clock::duration delay) ({
auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {

invoke after(when, [=]{ after idle(task, delay); });
} else {

task();

}
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Visualizing the Relationships

= The arguments and dependencies

“last i1dle

now() when
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Visualizing the Relationships

= Two operations

|||||||||||||||||||||||||||

task

last_idle
Now()
delay




Visualizing the Relationships

auto when = delay - (system clock::now() - last idle);
_last_idle
Now() > when

delay
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Visualizing the Relationships

auto when = delay - (system clock::now() - last idle);
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auto when = delay - (system clock::now() - last idle);
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Visualizing the Relationships

auto when = delay - (system clock::now() - last idle);
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On EXpiration

@ > remaining >®
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On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler (remaining, [=] {
on expiration (scheduler, timer, task);
})i
} else {
task();

}
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On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
- scheduler (remaining, [=] {
on expiration (scheduler, timer, task);

}) i
} else {

task();
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On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler (remaining, [=] {
on expiration (scheduler, timer, task);

}) i
} else {

task();
t
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On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler (remaining, [=] {
on expiration (scheduler, timer, task);

}) i
} else {

: task();
/ }
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On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler (remaining, [=] {
on expiration (scheduler, timer, task);
})i
} else {
task();

}
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On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler (remaining, [=] {
on expiration (scheduler, timer, task);
})i
} else {
task();

}
}

template <class S, class T, class F>
volid on expiration(S scheduler, T timer, F task) {
scheduler(timer(), [=] { on expiration (scheduler, timer, task); });

}
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Architecture

- By looking at the structure of the function we can design a better function
= Note that on_expiration has no external dependencies

- Nostd::chrono

- Nostd::function

- Orinvoke afteror last 1idle

= Requirements are the semantics of the operations and the relationship between arguments




Registry

© 2019 Adobe. All Rights Reserved.




Registry

= Aregistry is a container supporting the following operations

© 2019 Adobe. All Rights Reserved.




Registry

= Aregistry is a container supporting the following operations

= Add an object, and obtain a receipt




Registry

= Aregistry is a container supporting the following operations

= Add an object, and obtain a receipt

« Use the receipt to retrieve the object or remove it




Registry

= Aregistry is a container supporting the following operations
= Add an object, and obtain a receipt

« Use the receipt to retrieve the object or remove it

= Operate on the objects in the registry




Registry

= Aregistry is a container supporting the following operations
= Add an object, and obtain a receipt
« Use the receipt to retrieve the object or remove it

= Operate on the objects in the registry

= Example: signal handler




Registry

template <class T>
class registry {
unordered map<size t, T> map;
size t 1d = 0;
public:
auto append(T element) -> size t {
_map.emplace( i1d, move(element));
return id++;

vold erase(size t 1d) { map.erase(id); }

template <typename F>
volid for each(F f) const {
for (const auto& e : map)
f(e.second);

}i
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template <class T>

class registry {
unordered map<size t, T> map;
size t 1d = 0;

public:
auto append(T element) -> size t {
_map.emplace( i1d, move(element));
return 1id++;

vold erase(size t 1d) { map.erase(id); }

template <typename F>
volid for each(F f) const {
for (const auto& e : map)
f(e.second);
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template <class T>
class registry {
unordered map<size t, T> map;
size t 1d = 0;
. public:
auto append(T element) -> size t {
_map.emplace( i1d, move(element));
return id++;

vold erase(size t 1d) { map.erase(id); }

template <typename F>
volid for each(F f) const {
for (const auto& e : map)
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Registry

template <class T>

class registry {
unordered map<size t, T> map;
size t 1d = 0;

public:
auto append(T element) -> size t {
_map.emplace( i1d, move(element));
return 1id++;

- //

vold erase(size t 1d) { map.erase(id); }

template <typename F>
volid for each(F f) const {
for (const auto& e : map)
f(e.second);
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Registry

template <class T>
class registry {
unordered map<size t, T> map;
size t 1d = 0;
public:
auto append(T element) -> size t {
_map.emplace( i1d, move(element));
return id++;

vold erase(size t 1d) { map.erase(id); }

template <typename F>
volid for each(F f) const {
for (const auto& e : map)
f(e.second);

}i
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template <class T>
class registry {

unordered
size t _i.'.‘l
public: i UEI
auto appe
_map.€

retur

-

vold erase

template <

void for e

for (const auto& e : map)
f(e.second);
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Russian Coat Check Algorithm

* Receipts are ordered
= Coats always appended with stub
* Binary search to retrieve coat by matching receipt to stub

- When more than half the slot are empty, compact the coats

= (oats are always ordered by receipt stubs

= As an additional useful properties coats are always ordered by insertion




Russian Coat Check Algorithm

template <class T>

class registry {
vector<palr<size t, optional<T>>> map;
size t size = 0;
size t 1d = 0;

public:
/...
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Russian Coat Check Algorithm

auto append(T element) -> size t {
_map.emplace back( i1d, move(element));
++ size;
return id++;
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Russian Coat Check Algorithm

vold erase(size t 1d) {
auto p = lower bound
begin( map), end( map), 1id,
[ ] (const auto& a, const auto& b) { return a.first < b;

if (p == end( map) || p->first != id || !p->second) return;

p->second.reset();
-— size;

if ( size < ( map.size() / 2)) {
_map.erase(remove 1if(begin( map), end( map),

}) i

[ ] (const auto& e) { return !e.second;

end( map));
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o volid erase(size t 1id) {

""" auto p = lower bound
begin( map), end( map), id,
[ ] (const auto& a, const auto& b) { return a.first < b;

if (p == end( map) || p->first != id || !p->second) return;

p->second.reset();
-— size;

if ( size < ( map.size() / 2)) {
_map.erase(remove 1if(begin( map), end( map),

}) i

[ ] (const auto& e) { return !e.second;

end( map));
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vold erase(size t 1d) {
auto p = lower bound
begin( map), end( map), 1id,
[ ] (const auto& a, const auto& b) { return a.first < b;

. - if (p == end( _map) || p->first != id || !p->second) return;
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[ ] (const auto& e) { return !e.second;
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vold erase(size t 1d) {
auto p = lower bound
begin( map), end( map), 1id,
[ ] (const auto& a, const auto& b) { return a.first < b;

if (p == end( map) || p->first != id || !p->second) return;

p->second.reset();
-— size;

- if ( size < ( map.size() / 2)) {

‘‘‘‘ _map.erase(remove 1if(begin( map), end( map),

}) i

[ ] (const auto& e) { return !e.second;

end( map));
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Russian Coat Check Algorithm

template <typename F>
void for each(F f) {
for (const auto& e : map) {
if (e.second) f(*e.second);

}
b7

© 2019 Adobe. All Rights Reserved.




© 2019 Adobe. All Rights Reserved.

3000

2500

2000

1500

1000

500

Russian Coat Check Algorithm

reg_unordered_map

ratio (CPU time / Noop time)
Lower is faster

reg_vector



© 2019 Adobe. All Rights Reserved.

3000

2500

2000

1500

1000

500

Russian Coat Check Algorithm

reg_unordered_map

reg_vector

ratio (CPU time / Noop time)
Lower is faster

reg_for_each



© 2019 Adobe. All Rights Reserved.

3000

2500

2000

1500

1000

500

Russian Coat Check Algorithm

reg_unordered_map

reg_vector

ratio (CPU time / Noop time)
Lower is faster
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Allocations

unordered_map

vector
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Architecture

* Relationships can be exploited for performance

- Understanding the relationship between the cost of operations is important
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Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention

* Relies on the accounting equation

assets = liabilities + equity

= An example of equational reasoning

* Pioneered in the 11th century by the Jewish banking community
Likely developed independently in Korea in the same time period
* In the 14th century, double-entry bookkeeping was adopted by the Medici bank
Credited with establishing the Medici bank as reliable and trustworthy
* Leading to the rise of one of the most powerful family dynasties in history

- Double-entry bookkeeping was codified by Luca Pacioli (the Father of Accounting) in 1494

)
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g o.-‘-i-._ ’
W



L uca Paciol]

© 2019 Adobe. All Rights Reserved.




Double-entry bookkeeping




Double-entry bookkeeping

= Every transaction is entered twice, into at least two separate accounts




Double-entry bookkeeping

= Every transaction is entered twice, into at least two separate accounts

= There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses




Double-entry bookkeeping

= Every transaction is entered twice, into at least two separate accounts

= There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses

= This ensures the mechanical process of entering a transaction is done in two distinct ways




Double-entry bookkeeping

= Every transaction is entered twice, into at least two separate accounts
= There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses

= This ensures the mechanical process of entering a transaction is done in two distinct ways

- If the accounting equation is not satisfied, then we have a contradiction




Contradictions
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- When two relationships imply the same entity has different values

- Relationships are consistent it they imply the same entity has the same value

Entity




Data Race
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Data Race

= When two or more threads access the same object concurrently and at least one is writing

Object
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Data Race

= \We can resolve the race with a mutex

= But what does it mean?

T, > R,

M > (Object

© 2019 Adobe. All Rights Reserved.




No Raw Synchronization Primitives




Null Pointer Dereference

= C++ Specification: dereferencing a null pointer is undefined behavior




Null Pointer Dereference

= C++ Specification: dereferencing a null pointer is undefined behavior

p->member () ;




Null Pointer Dereference

= C++ Specification: dereferencing a null pointer is undefined behavior




Null Pointer Dereference

= C++ Specification: dereferencing a null pointer is undefined behavior

UB




Null Pointer Dereference

= C++ Specification: dereferencing a null pointer is undefined behavior

value 20* > r




Null Pointer Dereference

= C++ Specification: dereferencing a null pointer is undefined behavior

if (p) p->member();

value 20* > r
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Null Pointers or Optional Objects

* The graceful handling of nothing as a limit is important
= empty ranges, O, etc.

= Removing sections of code to avoid a crash is likely only moving the contradiction
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Pro 11p

= Use strong preconditions to move the issue to the caller

void f(type* p) {
Il oo
if (p) p->member();

I/ oo
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Pro 11p

= Use strong preconditions to move the issue to the caller

void f(type& p) {
[/ e

p.member () ;

I/ oo
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Object




Setting a Property

= Two functions setting the same value through a shared pointer

Object

p->set property(value);

// Someplace else...
p->set property(other value);
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Setting a Property

* Possible meanings:
= Code is redundant
- Different aspects of the same relationship, represented in disparate sections of code

- value 1s a * b when a changes
- other value 1s a * b when b changes
- Different, mutually exclusive, relationships with non-local control
= Implied “last in wins’ relationship
= An incidental algorithm - property will converge to the correct value
* Property is not a simple property but a stream, trigger, or latch

= Or Itisjust wrong
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No Raw Pointers
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Play the Game

- Consider the essential relationships
= Learn to see structure

= Architect code
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