Better Code: Relationships
Sean Parent | Senior Principal Scientist, Photoshop
Goal: No Contradictions
“A novice sees only the chessmen. An amateur sees the board. A master sees the game.”
– Unknown
“Computer scientists are bad at relationships.”
– Me
The Pieces

Relationships
Relations in Math

- A *relation* is a set of ordered pairs mapping entities from a *domain* to a *range*

- Distinct from a *function* in that the first *entity* does not uniquely determine the second

- A *relationship* is the way two entities are connected

\[\{(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots \} \]
Predicates

- A relation implies a *corresponding predicate* that tests if a pair exists in the relation
Predicates

- A relation implies a corresponding predicate that tests if a pair exists in the relation
- If it is true, the relationship is satisfied or holds
Predicates

- A relation implies a *corresponding predicate* that tests if a pair exists in the relation
 - If it is true, the relationship is *satisfied* or *holds*

- John is married to Jane
Predicates

- A relation implies a *corresponding predicate* that tests if a pair exists in the relation
 - If it is true, the relationship is *satisfied* or *holds*

- John is married to Jane
- Is John married to Jane?
Constraints

- A *constraint* is a relationship which *must* be satisfied
Constraints

- A constraint is a relationship which must be satisfied
- For another relationship to be satisfied
Constraints

- A constraint is a relationship which must be satisfied
- For another relationship to be satisfied
- The denominator must not be 0 for the result of division to be defined
Implication

\[a \implies b \]

\((a \text{ implies } b)\)
Implication

\[a \implies b \]

(a implies b)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>(a \implies b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A simple, but incomplete, notation

- Entities are represented with a rectangle, and relationships with a circle
- This forms a bipartite graph
A simple notation

- Implication is represented with directional edges

- This is shorthand for *given entities b and c, a is any entity such that R holds*
- Read as, *b and c imply a*
Relationships and Objects
Relationships and Objects

- As soon as we have two entities we have implicit relationships
Relationships and Objects

- As soon as we have two entities we have implicit relationships
- A memory space is an entity
Relationships and Objects

- As soon as we have two entities we have implicit relationships
- A memory space is an entity
- When an object is copied or moved, any relationship that object was involved in is either maintained or severed with respect to the destination object
Relationships and Objects

- As soon as we have two entities we have implicit relationships
 - A memory space is an entity
- When an object is copied or moved, any relationship that object was involved in is either *maintained* or *severed* with respect to the destination object
- When an object is destructed, any relationship that object was involved in is *severed*
Witnessed Relationships
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
- As an object, a witnessed relationship is copyable and equality comparable
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
- As an object, a witnessed relationship is copyable and equality comparable
- When an object is copied or moved, any witnessed relationship that object was involved in is either maintained, severed, or *invalidated* with respect to the destination object
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
- As an object, a witnessed relationship is copyable and equality comparable
- When an object is copied or moved, any witnessed relationship that object was involved in is either maintained, severed, or *invalidated* with respect to the destination object
- This includes copying or moving the object witnessing the relationship
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
- As an object, a witnessed relationship is copyable and equality comparable
- When an object is copied or moved, any witnessed relationship that object was involved in is either maintained, severed, or *invalidated* with respect to the destination object
- This includes copying or moving the object witnessing the relationship
- When an object is destructed, any witnessed relationship that object was involved in is either severed, or *invalidated*.
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
 - As an object, a witnessed relationship is copyable and equality comparable
 - When an object is copied or moved, any witnessed relationship that object was involved in is either maintained, severed, or *invalidated* with respect to the destination object
 - This includes copying or moving the object witnessing the relationship
 - When an object is destructed, any witnessed relationship that object was involved in is either severed, or *invalidated*.

- We may choose not to implement copy or move for witnessed relationships
Witnessed Relationships

- A *witnessed* relationship is a relationship represented by an object
 - As an object, a witnessed relationship is copyable and equality comparable
 - When an object is copied or moved, any witnessed relationship that object was involved in is either maintained, severed, or *invalidated* with respect to the destination object
 - This includes copying or moving the object witnessing the relationship
 - When an object is destructed, any witnessed relationship that object was involved in is either severed, or *invalidated*.

- We may choose not to implement copy or move for witnessed relationships
- This is how we get iterator invalidation “at a distance”
The Board

Structures
A structure on a set consists of additional entities that, in some manner, relate to the set, endowing the collection with meaning or significance.
0100
0100
0100

4
hash() ! = hash()

0100 0011
hash() != hash()
0100
0011
Memory Space

0100 0011
Memory Space
Memory Space

0100 0011
Memory Space

0100

0011
Memory Space
Memory Space
Memory Space
Memory Space

0011 + 0100 = 0111
Memory Space

0011 + 0100 = 0111

© 2019 Adobe. All Rights Reserved.
Safety

- An object instance, without meaning, is *invalid*
Safety

- An object instance, without meaning, is *invalid*
- An object in an invalid state, must either be restored to a valid state, or destroyed
Safety

- An object instance, without meaning, is *invalid*
- An object in an invalid state, must either be restored to a valid state, or destroyed
- This is related to the idea of a *partially formed* object
Safety

- An object instance, without meaning, is *invalid*
- An object in an invalid state, must either be restored to a valid state, or destroyed
- This is related to the idea of a *partially formed* object
- An operation which leaves an object in an invalid state is *unsafe*
Safety

- An object instance, without meaning, is *invalid*
- An object in an invalid state, must either be restored to a valid state, or destroyed
- This is related to the idea of a *partially formed* object
- An operation which leaves an object in an invalid state is *unsafe*

- `std::move()` is an unsafe operation
C++20
C++20

- Two new features specifically about relationships
C++20

- Two new features specifically about relationships
- Concepts
C++20

- Two new features specifically about relationships
 - Concepts
 - Contracts
C++20

- Two new features specifically about relationships
 - Concepts
 - Contracts
Fundamentals of Generic Programming

James C. Dehner and Alexander Stepanov

Silicon Graphics, Inc.
dehner@acm.org stepanov@silicon.com

Abstract. Generic programming depends on the decomposition of programs into components which may be developed separately and combined arbitrarily, subject only to well-defined interfaces. Among the interfaces of interest, indeed the most pervasively and unconsciously used, are the fundamental operators common to all C++ built-in types, as extended to user-defined types, e.g., copy constructors, assignment, and equality. We investigate the relations which must hold among these operators to preserve consistency with their semantics for the built-in types and with the expectations of programmers. We can produce an axiomatization of these operators which yields the required consistency with built-in types, matches the intuitive expectations of programmers, and also reflects our underlying mathematical expectations.

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science (LNCS) volume 1766. See http://www.springer.de/com/?q=index.html

1998
Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science (LNCS) volume 1766. See http://www.springer.de/computer/lncs/index.html

1998
“We call the set of axioms satisfied by a data type and a set of operations on it a concept.”
“We call the set of axioms satisfied by a data type and a set of operations on it a *concept*.”
An Axiomatic Basis for Computer Programming

C. A. R. HOARE
The Queen's University of Belfast, Northern Ireland

In this paper we attempt to isolate the logical foundations of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics. This involves the examination of sets of axioms and rules of inference which can be used in proofs of the properties of computer programs. Examples are given of such axioms and rules, and a formal proof of a simple theorem is displayed. Finally, it is argued that important advantages, both theoretical and practical, may follow from a purer use of these topics.

1. Introduction

Computer programming is an exact science in that all the properties of a program and all the consequences of exercising it in any given environment can, in principle, be found out from the text of the program itself by means of purely deductive reasoning. Deductive reasoning involves the application of valid rules of inference to sets of valid axioms. It is therefore desirable and interesting to elucidate the axioms and rules of inference which underlie our reasoning about computer programs. The exact choice of axioms will to some extent depend on the choice of programming language. For illustrative purposes, this paper is confined to a very simple language, which is effectively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a program is to know the properties of the elementary operations which it involves, for example, addition and multiplication of integers. Unfortunately, in several respects computer arithmetic is not the same as the arithmetic familiar to mathematicians, and it is necessary to exercise some care in selecting an appropriate set of axioms. For example, the axioms displayed in Table I are rather a small selection of axioms relevant to integers. From this incomplete set of axioms it is possible to deduce such simple theorems as:

\[x = x + y \times 0 \]

\[y \times r = r + y \times q = (r - y) + y \times (1 + q) \]

The proof of the second of these is:

\[A_5 \quad (r - y) + y \times (1 + q) \]
\[= (r - y) + (y \times 1 + y \times q) \]
\[= (r - y) + (y + y \times q) \]
\[= (r - y) + y + y \times q \]
\[A_6 \quad r + y \times q \quad \text{provided } q \leq r \]

The axioms A1 to A6, in fact, true of the traditional infinite set of integers in mathematics. However, they are also true of the finite sets of "integers" which are manipulated by computers provided that they are confined to non-negative numbers. Their truth is independent of the size of the set; furthermore, it is largely independent of the choice of technique applied in the event of "overflow"; for example:

1. (Strict interpretation: the result of an overflowing operation does not exist when overflow occurs, the offending program never completes its operation. Note that in this case, the equalities of A1 to A6 are refuted, in the sense that both sides exist or fail to exist together.)

2. (Firm boundary: the result of an overflowing operation is computed modulo the size of the set of integers represented.)

These three techniques are illustrated in Table II by addition and multiplication tables for a trivially small model in which 0, 1, 2, and 3 are the only integers represented.

It is interesting to note that the different systems satisfying axioms A1 to A6 may be rigorously distinguished from each other by choosing a particular one of a set of mutually exclusive supplementary axioms. For example, infinite arithmetic satisfies the axiom:

\[A_{10} \quad \neg \exists y \quad (y \times x) \]

where all finite arithmetics satisfy:

\[A_{11} \quad x \leq y \]

where "max" denotes the largest integer represented.

Similarly, the three treatments of overflow may be distinguished by a choice of one of the following axioms relating to the value of \(\text{max} + 1 \):

\[A_{12} \quad x = \exists (x = \text{max} + 1) \] (strict interpretation)

\[A_{13} \quad x = \text{max} + 1 = \text{max} \] (firm boundary)

\[A_{14} \quad x = \text{max} + 1 = 0 \] (modulo arithmetic)

Having selected one of these axioms, it is possible to use it in deducing the properties of programs; however,
An Axiomatic Basis for Computer Programming

C. A. R. Hoare

The Queen’s University of Belfast,* Northern Ireland

2. Computer Arithmetic

The first requirement in valid reasoning about a program is to know the properties of the elementary operations which it involves, for example, addition and multiplication of integers. Unfortunately, in several respects computer arithmetic is not the same as the arithmetic familiar to mathematicians, and it is necessary to exercise some care in selecting an appropriate set of axioms. For example, the axioms displayed in Table I are rather a small selection of axioms relevant to integers. From this incomplete set

* Department of Computer Science

It is interesting to note that the different systems satisfying axioms A4 to A9 may be rigorously distinguished from each other by choosing a particular one of a set of mutually exclusive supplementary axioms. For example, infinite arithmetic satisfies the axiom:

\[a \leq b \implies a + b = b \]

where all finite arithmetics satisfy:

\[a \leq b \implies a + b = a \]

where "max" denotes the largest integer represented.

Similarly, the three treatments of overflow may be distinguished by a choice of one of the following axioms relating to the value of max + 1:

\[A1a \quad a + (\text{max} + 1) = a \quad \text{(strict interpretation)} \]

\[A1b \quad \text{max} + 1 = \text{max} \quad \text{(firm boundary)} \]

\[A1c \quad \text{max} + 1 = 0 \quad \text{(modulo arithmetic)} \]

Having selected one of these axioms, it is possible to use it in defining the properties of programs; however,
Equality

- Two objects are equal iff their values correspond to the same entity
Equality

- Two objects are equal iff their values correspond to the same entity
- From this definition we can derive the following properties:

\[(\forall a) a = a.\] \hspace{1cm} \text{(Reflexivity)}

\[(\forall a, b) a = b \Rightarrow b = a.\] \hspace{1cm} \text{(Symmetry)}

\[(\forall a, b, c) a = b \land b = c \Rightarrow a = c.\] \hspace{1cm} \text{(Transitivity)}
Concepts

- Axioms follow from the definition
- A collection of connected axioms form an algebraic structure
- Connected type requirements form a concept
Copy and Assignment

- Properties of copy and assignment:

 \[b \rightarrow a \Rightarrow a = b \]

 \[a = b = c \land d \neq a, d \rightarrow a \Rightarrow a \neq b \land b = c \]

 (copies are equal)

 (copies are disjoint)

- Copy is connected to equality
Natural Total Order

• The natural total order is a total order that respects the other fundamental operations of the type

• A total order has the following properties:

\[
(\forall a, b) \text{exactly one of the following holds:}
\]

\[
a < b, b < a, \text{ or } a = b.
\quad \text{(Trichotomy)}
\]

\[
(\forall a, b, c) a < b \land b < c \Rightarrow a < c.
\quad \text{(Transitivity)}
\]
Natural Total Order

- Example: Integer $<$ is consistent with addition.

$$(\forall n \in \mathbb{Z}) n < (n + 1).$$
Concepts

- Quantified axioms are (generally) not actionable
- Concepts in C++20 work by associating semantics with the name of an operation
Software is defined on Algebraic Structures
Applying “Design by Contract”

Bertrand Meyer
Interactive Software Engineering

As object-oriented techniques steadily gain ground in the world of software development, users and prospective users of these techniques are clamoring more and more loudly for a “methodology” of object-oriented software construction — or at least for some methodological guidelines. This article presents such guidelines, whose main goal is to help improve the reliability of software systems. Reliability is here defined as the combination of correctness and robustness or, more poetically, as the absence of bugs. Everyone developing software systems, or just using them, knows how pressing this question of reliability is in the current state of software engineering. Yet the rapidly growing literature on object-oriented analysis, design, and programming includes remarkably few contributions on how to make object-oriented software more reliable. This is surprising and regrettable, since at least three reasons justify devoting particular attention to reliability in the context of object-oriented development:

- The cornerstone of object-oriented technology is reuse. For reusable components, which may be used in thousands of different applications, the potential consequences of incorrect behavior are even more serious than for applicationspecific developments.
- Proponents of object-oriented methods make strong claims about their beneficial effect on software quality. Reliability is certainly a central component of any reasonable definition of quality as applied to software.
- The object-oriented approach, based on the theory of abstract data types, provides a particularly appropriate framework for discussing and enforcing reliability.

The pragmatic techniques presented in this article, while certainly not providing infallible ways to guarantee reliability, may help considerably toward this goal. They rely on the theory of design by contract, which underlies the design of the Eiffel analysis, design, and programming language and of the supporting libraries, from which a number of examples will be drawn.

The contributions of the work reported below include:

- a coherent set of methodological principles helping to produce correct and robust software;
- a systematic approach to the delicate problem of how to deal with abnormal cases, leading to a simple and powerful exception-handling mechanism; and

Reliability is even more important in object-oriented programming than elsewhere. This article shows how to reduce bugs by building software components on the basis of carefully designed contracts.
Applying “Design by Contract”

Bertrand Meyer
Interactive Software Engineering

Reliability is even more important in object-oriented programming than elsewhere. This article shows how to reduce bugs by building software components on the basis of carefully designed contracts.

The cornerstones of object-oriented technology is reuse. For reusable components, which may be used in thousands of different applications, the potential consequences of incorrect behavior are even more serious than for application-specific developments.

Proposers of object-oriented methods make strong claims about their beneficial effect on software quality. Reliability is certainly a central component of any reasonable definition of quality as applied to software.

The object-oriented approach, based on the theory of abstract data types, provides a particularly appropriate framework for discussing and enforcing reliability.

The pragmatic techniques presented in this article, while certainly not providing infallible ways to guarantee reliability, may help considerably toward this goal. They rely on the theory of design by contract, which underlies the design of the Eiffel analysis, design, and programming language and of the supporting libraries, from which a number of examples will be drawn.

The contributions of the work reported below include:

- a coherent set of methodological principles helping to produce correct and robust software;
- a systematic approach to the delicate problem of how to deal with abnormal cases, leading to a simple and powerful exception-handling mechanism; and

1986 (original)
An Axiomatic Basis for Computer Programming

C. A. R. Hoare
The Queen’s University of Belfast, * Northern Ireland

2. Computer Arithmetic

The first requirement in valid reasoning about a program is to know the properties of the elementary operations which it involves; for example, addition and multiplication of integers. Unfortunately, in several respects computer arithmetic is not the same as the arithmetic familiar to mathematicians, and it is necessary to exercise some care in selecting an appropriate set of axioms. For example, the axioms displayed in Table I are rather a small selection of axioms relevant to integers. From this incomplete set

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11a</td>
<td>(x = \text{max} + 1) (strict interpretation)</td>
</tr>
<tr>
<td>A11b</td>
<td>(\text{max} + 1 = \text{max}) (fsm boundary)</td>
</tr>
<tr>
<td>A11c</td>
<td>(\text{max} + 1 = 0) (modulo arithmetic)</td>
</tr>
</tbody>
</table>

It is interesting to note that the different systems satisfying axioms A1 to A5 may be rigorously distinguished from each other by choosing a particular one of a set of mutually exclusive supplementary axioms. For example, infinite arithmetic satisfies the axiom:

\[\exists y (y < x) \]

where all finite arithmetics satisfy:

\[\forall x (x < \text{max}) \]

where “\(\text{max} \)” denotes the largest integer represented.

Similarly, the three treatments of overflow may be distinguished by a choice of one of the following axioms relating to the value of \(\text{max} + 1 \):

\[\text{A11a} \quad (x = \text{max} + 1) \quad \text{(strict interpretation)} \]
\[\text{A11b} \quad \text{max} + 1 = \text{max} \quad \text{(fsm boundary)} \]
\[\text{A11c} \quad \text{max} + 1 = 0 \quad \text{(modulo arithmetic)} \]

Having selected one of these axioms, it is possible to use it in defining the properties of programs; however,
Contracts

- Originally part of the Eiffel language
- Contracts allow the specification of constraints
 - Preconditions (require)
 - Postconditions (ensure)
 - Class Invariants
Contracts

- Contracts are actionable predicates on values
“In some cases, one might want to use quantified expressions of the form “For all x of type T, $p(x)$ holds” or “There exists x of type T, such that $p(x)$ holds,” where p is a certain Boolean property. Such expressions are not available in Eiffel.”
Concepts and Contracts

- Concepts describe relationships between operations on a type
- Contracts describe relationships between values

- The distinction is not always clear
 - i.e. The comparison operation passed to `std::sort` must implement a *strict weak ordering relation* over the values being sorted
Pattern Matching
Pattern Matching

- Concepts are used as a compile time constraint to select an appropriate operation
Pattern Matching

- Concepts are used as a compile time constraint to select an appropriate operation
- Contracts assert at runtime if an operations preconditions are not met
Pattern Matching

- Concepts are used as a compile time constraint to select an appropriate operation
- Contracts assert at runtime if an operations preconditions are not met

- A runtime constraint to select an appropriate operation is known as *pattern matching*
Pattern Matching

- Concepts are used as a compile time constraint to select an appropriate operation
- Contracts assert at runtime if an operations preconditions are not met

- A runtime constraint to select an appropriate operation is known as pattern matching

```c
void f(auto i) requires requires { !(i < 0) }
```
Pattern Matching

- Concepts are used as a compile time constraint to select an appropriate operation
- Contracts assert at runtime if an operations preconditions are not met

- A runtime constraint to select an appropriate operation is known as *pattern matching*

```c
void f(auto i) requires requires { !(i < 0) }
void f(int i) [[expects !(i < 0)]]
```
Pattern Matching

- Concepts are used as a compile time constraint to select an appropriate operation
- Contracts assert at runtime if an operations preconditions are not met

- A runtime constraint to select an appropriate operation is known as pattern matching

```cpp
void f(auto i) requires requires { !(i < 0) }
void f(int i) [[expects !(i < 0)]]
void f(int i) requires !(i < 0) // Not yet in C++...
```
Whole-Part Relationships and Composite Objects
Whole-Part Relationships and Composite Objects

- Connected
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
- Logically Disjoint
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
- Logically Disjoint
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
- Logically Disjoint
- Owning
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
- Logically Disjoint
- Owning
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
- Logically Disjoint
- Owning

Elements of Programming, Chapter 12
Whole-Part Relationships and Composite Objects

- Connected
- Noncircular
- Logically Disjoint
- Owning

- Standard Containers are Composite Objects
- Composite objects allow us to reason about a collection of objects as a single entity

Elements of Programming, Chapter 12
class view {
 std::list<std::shared_ptr<view>> _children;
 std::weak_ptr<view> _parent;
 //...
};
No Incidental Data Structures

```
adobe::forest<view>
```
No Incidental Data Structures

views
// Next, check if the panel has moved to the other side of another panel.
const int center_x = fixed_panel->cur_panel_center();
for (size_t i = 0; i < expanded_panels_.size(); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (center_x <= panel->cur_panel_center() ||
 i == expanded_panels_.size() - 1) {
 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 if (i < expanded_panels_.size()) {
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 } else {
 expanded_panels_.push_back(ref);
 }
 }
 break;
 }
}
No Raw Loops

```cpp
std::rotate(p, f, f + 1);
```
No Raw Loops
The Game
Architecture
Architecture is the art and practice of designing and constructing structures.
Task

- Save the document every 5 minutes, after the application has been idle for at least 5 seconds.
Task

- **Save the document every 5 minutes**, after the application has been idle for at least 5 seconds.
Task

- **Save the document every 5 minutes**, after the application has been idle for at least 5 seconds.
Task

- After the application has been idle for at least n seconds do something
Task

- After the application has been idle for at least \(n \) seconds do *something*

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>)

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
    auto when = delay - (system_clock::now() - _last_idle);

    if (system_clock::duration::zero() < when) {
        invoke_after(when, [=] { after_idle(task, delay); });
    } else {
        task();
    }
}
```
Task

- After the application has been idle for at least n seconds do *something*

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>)

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
    auto when = delay - (system_clock::now() - _last_idle);

    if (system_clock::duration::zero() < when) {
        invoke_after(when, [=]{ after_idle(task, delay); });
    } else {
        task();
    }
}
```
Task

- After the application has been idle for at least \(n \) seconds do \textit{something}

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>);;

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
  auto when = delay - (system_clock::now() - _last_idle);

  if (system_clock::duration::zero() < when) {
    invoke_after(when, [=]{ after_idle(task, delay); });
  } else {
    task();
  }
}
```
Task

- After the application has been idle for at least \(n \) seconds do something

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>);

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
    auto when = delay - (system_clock::now() - _last_idle);

    if (system_clock::duration::zero() < when) {
        invoke_after(when, [=]{ after_idle(task, delay); });
    } else {
        task();
    }
}
```
Task

- After the application has been idle for at least \(n \) seconds do something

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>);

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
    auto when = delay - (system_clock::now() - _last_idle);

    if (system_clock::duration::zero() < when) {
        invoke_after(when, [=]{ after_idle(task, delay); });
    } else {
        task();
    }
}
```
Task

- After the application has been idle for at least \(n \) seconds do \textit{something}

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>);

template <class F>  // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
  auto when = delay - (system_clock::now() - _last_idle);

  if (system_clock::duration::zero() < when) {
    invoke_after(when, [=]{ after_idle(task, delay); });
  } else {
    task();
  }
}
```
Task

- After the application has been idle for at least \(n \) seconds do \textit{something}

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>);

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
    auto when = delay - (system_clock::now() - _last_idle);

    if (system_clock::duration::zero() < when) {
        invoke_after(when, [=]{ after_idle(task, delay); });
    } else {
        task();
    }
}
```
Task

- After the application has been idle for at least \(n \) seconds do \textit{something}

```cpp
extern system_clock::time_point _last_idle;
void invoke_after(system_clock::duration, function<void()>);

template <class F> // F is task of the form void()
void after_idle(F task, system_clock::duration delay) {
    auto when = delay - (system_clock::now() - _last_idle);

    if (system_clock::duration::zero() < when) {
        invoke_after(when, [=]{ after_idle(task, delay); });
    } else {
        task();
    }
}
```
Visualizing the Relationships

- The structure, ignoring the recursion in `invoke_after`

\(^1\)
Visualizing the Relationships

- The structure, ignoring the recursion in `invoke_after`
Visualizing the Relationships

- The arguments and dependencies

```
_last_idle
```

```
now()
```

```
delay
```

```
when
```

```
[1]
```

```
task
```
Visualizing the Relationships

- Two operations

```
_last_idle
now()
delay
when
[1]
task
```
auto when = delay - (system_clock::now() - _last_idle);
Visualizing the Relationships

```cpp
auto when = delay - (system_clock::now() - _last_idle);
```
Visualizing the Relationships

```cpp
auto when = delay - (system_clock::now() - _last_idle);
```
Visualizing the Relationships

```cpp
auto when = delay - (system_clock::now() - _last_idle);
```
On Expiration
On Expiration

T → remaining → S

task
On Expiration

T -> remaining -> S

remaining

-> task

S
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype{remaining}{0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}
On Expiration

template <class S, class T, class F>
void on_expiration_(S scheduler, T timer, F task) {
 auto remaining = timer();

 if (decltype(remaining){0} < remaining) {
 scheduler(remaining, [=] {
 on_expiration_(scheduler, timer, task);
 });
 } else {
 task();
 }
}

template <class S, class T, class F>
void on_expiration(S scheduler, T timer, F task) {
 scheduler(timer(), [=] { on_expiration_(scheduler, timer, task); });
}
Architecture

- By looking at the structure of the function we can design a better function
Architecture

- By looking at the structure of the function we can design a better function
- Note that on_expiration has no external dependencies
Architecture

- By looking at the structure of the function we can design a better function
- Note that on_expiration has no external dependencies
 - No `std::chrono`
Architecture

- By looking at the structure of the function we can design a better function
- Note that on_expiration has no external dependencies
 - No `std::chrono`
 - No `std::function`
Architecture

- By looking at the structure of the function we can design a better function
- Note that on_expiration has no external dependencies
 - No `std::chrono`
 - No `std::function`
 - Or `invoke_after` or `last_idle`
Architecture

- By looking at the structure of the function we can design a better function
- Note that on_expiration has no external dependencies
 - No `std::chrono`
 - No `std::function`
 - Or `invoke_after` or `last_idle`
- Requirements are the semantics of the operations and the relationship between arguments
Registry

- A registry is a container supporting the following operations
Registry

- A registry is a container supporting the following operations
- Add an object, and obtain a receipt
Registry

- A registry is a container supporting the following operations
 - Add an object, and obtain a receipt
 - Use the receipt to retrieve the object or remove it
Registry

- A registry is a container supporting the following operations
 - Add an object, and obtain a receipt
 - Use the receipt to retrieve the object or remove it
 - Operate on the objects in the registry
Registry

- A registry is a container supporting the following operations
 - Add an object, and obtain a receipt
 - Use the receipt to retrieve the object or remove it
 - Operate on the objects in the registry

- Example: signal handler
template <class T>

class registry {
 unordered_map<
 size_t,
 T>
 _map;
 size_t
 _id = 0;

public:
 auto append(T element) -> size_t {
 _map.emplace(_id, move(element));
 return _id++;
 }

 void erase(size_t id) {
 _map.erase(id);
 }

 template <typename F>
 void for_each(F f) const {
 for (const auto & e : _map)
 f(e.second);
 }
};
template <class T>
class registry {
 unordered_map<size_t, T> _map;
 size_t _id = 0;

public:
 auto append(T element) -> size_t {
 _map.emplace(_id, move(element));
 return _id++;
 }

 void erase(size_t id) { _map.erase(id); }

 template <typename F>
 void for_each(F f) const {
 for (const auto& e : _map)
 f(e.second);
 }
};
template <class T>
class registry {
 unordered_map<size_t, T> _map;
 size_t _id = 0;

public:
 auto append(T element) -> size_t {
 _map.emplace(_id, move(element));
 return _id++;
 }

 void erase(size_t id) { _map.erase(id); }

 template <typename F>
 void for_each(F f) const {
 for (const auto& e : _map)
 f(e.second);
 }
};
template <class T>

class registry {

 unordered_map<size_t, T> _map;
 size_t _id = 0;

public:
 auto append(T element) -> size_t {
 _map.emplace(_id, move(element));
 return _id++;
 }

 void erase(size_t id) { _map.erase(id); }

 template <typename F>
 void for_each(F f) const {
 for (const auto& e : _map)
 f(e.second);
 }
};
template <class T>

class registry {
 unordered_map<
 size_t, T>
 _map;
 size_t _id = 0;

public:
 auto append(T element) -> size_t {
 _map.emplace(_id, move(element));
 return _id++;
 }

 void erase(size_t id) { _map.erase(id); }

 template <typename F>
 void for_each(F f) const {
 for (const auto& e : _map)
 f(e.second);
 }
};
template <class T>
class registry {
 unordered_map<size_t, T> _map;
 size_t _id = 0;
public:
 auto append(T element) -> size_t {
 _map.emplace(_id, move(element));
 return _id++;
 }

 void erase(size_t id) { _map.erase(id); }

 template <typename F>
 void for_each(F f) const {
 for (const auto& e : _map)
 f(e.second);
 }
};
```cpp
template <class T>
class registry {
    unordered_map<size_t, T> _map;
    size_t _id = 0;

public:
    auto append(T element) -> size_t {
        _map.emplace(_id, move(element));
        return _id++;
    }

    void erase(size_t id) { _map.erase(id); }

    template <typename F>
    void for_each(F f) const {
        for (const auto& e : _map)
            f(e.second);
    }
};
```
template <class T>
class registry {
 unordered_map<T, size_t> _map;
public:
 auto append(const T& data, const size_t id) {
 _map.emplace(data, id);
 return id;
 }

 void erase(const T& data) {
 _map.erase(data);
 }

 template <)
 void for_each(const std::function<void(const T& data, const size_t id)> &f) {
 for (const auto& e : _map)
 f(e.first, e.second);
 }
};
Russian Coat Check Algorithm
Russian Coat Check Algorithm

- Receipts are ordered
Russian Coat Check Algorithm

- Receipts are **ordered**
- Coats always appended with stub
Russian Coat Check Algorithm

- Receipts are **ordered**
- Coats always appended with stub
- Binary search to retrieve coat by matching receipt to stub
Russian Coat Check Algorithm

- Receipts are *ordered*
 - Coats always appended with stub
 - Binary search to retrieve coat by matching receipt to stub
 - When more than half the slot are empty, compact the coats
Russian Coat Check Algorithm

- Receipts are **ordered**
 - Coats always appended with stub
 - Binary search to retrieve coat by matching receipt to stub
 - When more than half the slot are empty, compact the coats
- Coats are always ordered by receipt stubs
Russian Coat Check Algorithm

- Receipts are **ordered**
 - Coats always appended with stub
 - Binary search to retrieve coat by matching receipt to stub
 - When more than half the slot are empty, compact the coats

- Coats are always ordered by receipt stubs
- As an additional useful properties coats are always ordered by insertion
template <class T>
class registry {
 vector<pair<size_t, optional<T>>> _map;
 size_t _size = 0;
 size_t _id = 0;

public:
 //...
```cpp
auto append(T element) -> size_t {
    _map.emplace_back(_id, move(element));
    ++_size;
    return _id++;
}
//...
```
Russian Coat Check Algorithm
Russian Coat Check Algorithm

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
</tbody>
</table>
void erase(size_t id) {
 auto p = lower_bound(
 begin(_map), end(_map), id,
 [](const auto& a, const auto& b) { return a.first < b; });

 if (p == end(_map) || p->first != id || !p->second) return;

 p->second.reset();
 --_size;

 if (_size < (_map.size() / 2)) {
 _map.erase(remove_if(begin(_map), end(_map),
 [](const auto& e) { return !e.second; }),
 end(_map));
 }
}

//...
```c++
void erase(size_t id) {
    auto p = lower_bound(
        begin(_map), end(_map), id,
        [](const auto& a, const auto& b) { return a.first < b; });

    if (p == end(_map) || p->first != id || !p->second) return;

    p->second.reset();
    --_size;

    if (_size < (_map.size() / 2)) {
        _map.erase(remove_if(begin(_map), end(_map),
            [](const auto& e) { return !e.second; })),
            end(_map));
    }
}  
//...
```c++
void erase(size_t id) {
 auto p = lower_bound(
 begin(_map), end(_map), id,
 [](const auto& a, const auto& b) { return a.first < b; });

 if (p == end(_map) || p->first != id || !p->second) return;

 p->second.reset();
 --_size;

 if (_size < (_map.size() / 2)) {
 _map.erase(remove_if(begin(_map), end(_map),
 [](const auto& e) { return !e.second; }));
 end(_map);
 }
}
//...
```
void erase(size_t id) {
    auto p = lower_bound(
        begin(_map), end(_map), id,
        [](const auto& a, const auto& b) { return a.first < b; })
    if (p == end(_map) || p->first != id || !p->second) return;
    p->second.reset();
    --_size;

    if (_size < (_map.size() / 2)) {
        _map.erase(remove_if(begin(_map), end(_map),
            [](const auto& e) { return !e.second; }), end(_map));
    }
    //...
void erase(size_t id) {
    auto p = lower_bound(
        begin(_map), end(_map), id,
        [](const auto& a, const auto& b) { return a.first < b; });

    if (p == end(_map) || p->first != id || !p->second) return;

    p->second.reset();
    --_size;

    if (_size < (_map.size() / 2)) {
        _map.erase(remove_if(begin(_map), end(_map),
            [](const auto& e) { return !e.second; }),
            end(_map));
    }
    //...
}
```cpp
void erase(size_t id) {
 auto p = lower_bound(
 begin(_map), end(_map), id,
 [](const auto& a, const auto& b) { return a.first < b; });

 if (p == end(_map) || p->first != id || !p->second) return;

 p->second.reset();
 --_size;

 if (_size < (_map.size() / 2)) {
 _map.erase(remove_if(begin(_map), end(_map),
 [](const auto& e) { return !e.second; })),
 end(_map));
 }
 //...
```
void erase(size_t id) {
    auto p = lower_bound(
        begin(_map), end(_map), id,
        [](const auto& a, const auto& b) { return a.first < b; });

    if (p == end(_map) || p->first != id || !p->second) return;

    p->second.reset();
    --_size;

    if (_size < (_map.size() / 2)) {
        _map.erase(remove_if(begin(_map), end(_map),
            [](const auto& e) { return !e.second; })),
            end(_map));
    }
} //...
Russian Coat Check Algorithm

```
0 1 2 3 4 5 6 7
a b c d e f g h
```
Russian Coat Check Algorithm

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td>x</td>
<td>d</td>
<td>e</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
### Russian Coat Check Algorithm

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td>x</td>
<td>d</td>
<td>e</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Russian Coat Check Algorithm

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Russian Coat Check Algorithm

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Russian Coat Check Algorithm

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
<td>e</td>
<td>i</td>
<td>j</td>
</tr>
</tbody>
</table>
template <typename F>
void for_each(F f) {
    for (const auto& e : _map) {
        if (e.second) f(*e.second);
    }
};
Russian Coat Check Algorithm

ratio (CPU time / Noop time)
Lower is faster
Russian Coat Check Algorithm

![Graph showing the CPU time to Noop time ratio for different methods. The methods are reg_unordered_map, reg_vector, and reg_for_each. The graph indicates that reg_unordered_map is the fastest.]
Russian Coat Check Algorithm

- **reg_unordered_map**: 3000
- **reg_vector**: 1000
- **reg_for_each**: 0

**Ratio (CPU time / Noop time)**
Lower is faster

640
Russian Coat Check Algorithm

![Graph showing allocations vs elements for unordered_map and vector]

- **Allocations**
- **Elements**

- **unordered_map**
- **vector**
Russian Coat Check Algorithm

Allocations

unordered_map

vector

Elements
Russian Coat Check Algorithm

Allocations vs. Elements
Architecture

- Relationships can be exploited for performance
Architecture

- Relationships can be exploited for performance
- Understanding the relationship between the cost of operations is important
Goal: No Contradictions
Double-entry bookkeeping
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation

\[ \text{assets} = \text{liabilities} + \text{equity} \]
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation
  \[ \text{assets} = \text{liabilities} + \text{equity} \]
- An example of equational reasoning
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation
  \[ \text{assets} = \text{liabilities} + \text{equity} \]
- An example of equational reasoning
- Pioneered in the 11th century by the Jewish banking community
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation
  \[ assets = liabilities + equity \]
- An example of equational reasoning
- Pioneered in the 11th century by the Jewish banking community
- Likely developed independently in Korea in the same time period
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation
  \[ \text{assets} = \text{liabilities} + \text{equity} \]
- An example of equational reasoning
- Pioneered in the 11th century by the Jewish banking community
  - Likely developed independently in Korea in the same time period
- In the 14th century, double-entry bookkeeping was adopted by the Medici bank
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation
  \[ \text{assets} = \text{liabilities} + \text{equity} \]
- An example of equational reasoning
- Pioneered in the 11th century by the Jewish banking community
  - Likely developed independently in Korea in the same time period
- In the 14th century, double-entry bookkeeping was adopted by the Medici bank
  - Credited with establishing the Medici bank as reliable and trustworthy
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation

\[
assets = liabilities + equity
\]

- An example of equational reasoning
- Pioneered in the 11th century by the Jewish banking community
  - Likely developed independently in Korea in the same time period
- In the 14th century, double-entry bookkeeping was adopted by the Medici bank
  - Credited with establishing the Medici bank as reliable and trustworthy
  - Leading to the rise of one of the most powerful family dynasties in history
Double-entry bookkeeping

- Double-entry bookkeeping is an accounting tool for error detection and fraud prevention
- Relies on the accounting equation
  \[
  \text{assets} = \text{liabilities} + \text{equity}
  \]
- An example of equational reasoning
- Pioneered in the 11th century by the Jewish banking community
  - Likely developed independently in Korea in the same time period
- In the 14th century, double-entry bookkeeping was adopted by the Medici bank
  - Credited with establishing the Medici bank as reliable and trustworthy
    - Leading to the rise of one of the most powerful family dynasties in history
- Double-entry bookkeeping was codified by Luca Pacioli (the Father of Accounting) in 1494
Luca Pacioli
Double-entry bookkeeping
Double-entry bookkeeping

- Every transaction is entered twice, into at least two separate accounts
Double-entry bookkeeping

- Every transaction is entered twice, into at least two separate accounts
- There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses
Double-entry bookkeeping

- Every transaction is entered twice, into at least two separate accounts
- There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses
- This ensures the mechanical process of entering a transaction is done in two distinct ways
Double-entry bookkeeping

- Every transaction is entered twice, into at least two separate accounts
- There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses
- This ensures the mechanical process of entering a transaction is done in two distinct ways

- If the accounting equation is not satisfied, then we have a *contradiction*
Contradictions
Contradictions

- When two relationships imply the same entity has different values
Contradictions

- When two relationships imply the same entity has different values
- Relationships are *consistent* if they imply the same entity has the same value
Contradictions

- When two relationships imply the same entity has different values
- Relationships are *consistent* if they imply the same entity has the same value
Data Race

$T_1$  $T_2$  Object
Data Race

- When two or more threads access the same object concurrently and at least one is writing
Data Race

\[ T_1 \rightarrow R_1 \rightarrow M \rightarrow \text{Object} \]

\[ T_2 \rightarrow R_2 \rightarrow M \rightarrow \text{Object} \]
Data Race

- We can resolve the race with a mutex
Data Race

- We can resolve the race with a mutex
- But what does it mean?
Data Race

- We can resolve the race with a mutex
- But what does it mean?

Diagram:

- $T_1$ to $R_1$
- $T_2$ to $R_2$
- $M$ to $Object$
No Raw Synchronization Primitives
Null Pointer Dereference

- C++ Specification: dereferencing a null pointer is *undefined behavior*
Null Pointer Dereference

- C++ Specification: dereferencing a null pointer is *undefined behavior*

```c
p->member();
```
Null Pointer Dereference

- C++ Specification: dereferencing a null pointer is *undefined behavior*

```cpp
p->member(); // SIGABRT
```
Null Pointer Dereference

- C++ Specification: dereferencing a null pointer is *undefined behavior*

```c
p->member(); // SIGABRT
```

![Diagram](attachment:0)

- *0
- \(\neg^*0\)
- \(*0\)
- \(UB\)
Null Pointer Dereference

- C++ Specification: dereferencing a null pointer is *undefined behavior*
Null Pointer Dereference

- C++ Specification: dereferencing a null pointer is *undefined behavior*

```c
if (p) p->member();
```
Null Pointers or Optional Objects
Null Pointers or Optional Objects

- The graceful handling of *nothing* as a limit is important
Null Pointers or Optional Objects

- The graceful handling of *nothing* as a limit is important
- empty ranges, 0, etc.
Null Pointers or Optional Objects

- The graceful handling of *nothing* as a limit is important
- empty ranges, 0, etc.
- Removing sections of code to avoid a crash is likely only moving the contradiction
Null Pointers or Optional Objects

- The graceful handling of *nothing* as a limit is important
- empty ranges, 0, etc.
- Removing sections of code to avoid a crash is likely only moving the contradiction
Pro Tip

- Use strong preconditions to move the issue to the caller
Pro Tip

- Use strong preconditions to move the issue to the caller

```c
void f(type* p) {
 //...
 if (p) p->member();
 //...
}
```
Pro Tip

- Use strong preconditions to move the issue to the caller

```c
void f(type& p) {
 //...
 p.member();
 //...
}
```
Setting a Property

- Two functions setting the same value through a shared pointer
Setting a Property

- Two functions setting the same value through a shared pointer

```
p->set_property(value);
// Someplace else...
p->set_property(other_value);
```
Setting a Property
Setting a Property

- Possible meanings:
Setting a Property

- Possible meanings:
  - Code is redundant
Setting a Property

- Possible meanings:
- Code is redundant
- Different aspects of the same relationship, represented in disparate sections of code
  - `value` is `a * b` when `a` changes
  - `other_value` is `a * b` when `b` changes
Setting a Property

- Possible meanings:
  - Code is redundant
  - Different aspects of the same relationship, represented in disparate sections of code
    - value is $a \times b$ when $a$ changes
    - other_value is $a \times b$ when $b$ changes
  - Different, mutually exclusive, relationships with non-local control
Setting a Property

- Possible meanings:
  - Code is redundant
  - Different aspects of the same relationship, represented in disparate sections of code
    - `value` is `a * b` when `a` changes
    - `other_value` is `a * b` when `b` changes
  - Different, mutually exclusive, relationships with non-local control
  - Implied “last in wins” relationship
Setting a Property

- Possible meanings:
  - Code is redundant
  - Different aspects of the same relationship, represented in disparate sections of code
    - \texttt{value} is \( a \times b \) when \( a \) changes
    - \texttt{other\_value} is \( a \times b \) when \( b \) changes
  - Different, mutually exclusive, relationships with non-local control
  - Implied “last in wins” relationship
  - An incidental algorithm - property will converge to the correct value
Setting a Property

- Possible meanings:
  - Code is redundant
  - Different aspects of the same relationship, represented in disparate sections of code
  - `value` is `a * b` when `a` changes
  - `other_value` is `a * b` when `b` changes
  - Different, mutually exclusive, relationships with non-local control
  - Implied “last in wins” relationship
  - An incidental algorithm - property will converge to the correct value
  - Property is not a simple property but a stream, trigger, or latch
Setting a Property

- Possible meanings:
  - Code is redundant
  - Different aspects of the same relationship, represented in disparate sections of code
    - `value is a * b when a changes`
    - `other_value is a * b when b changes`
  - Different, mutually exclusive, relationships with non-local control
  - Implied "last in wins" relationship
  - An incidental algorithm - property will converge to the correct value
  - Property is not a simple property but a stream, trigger, or latch
  - Or, it is just wrong
Setting a Property

- Possible meanings:
  - Code is redundant
  - Different aspects of the same relationship, represented in disparate sections of code
    - `value is a * b when a changes`
    - `other_value is a * b when b changes`
  - Different, mutually exclusive, relationships with non-local control
  - Implied “last in wins” relationship
  - An incidental algorithm - property will converge to the correct value
  - Property is not a simple property but a stream, trigger, or latch
  - Or, it is just wrong
No Raw Pointers
Play the Game
Play the Game

- Consider the *essential* relationships
Play the Game

- Consider the *essential* relationships
- Learn to see structure
Play the Game

- Consider the *essential* relationships
- Learn to see structure
- Architect code
photoshopising.com