!,}! W

3ringing Photoshop to the iPad

Sean Parent | Senior Principal Scientist

o T—

#AdobeRemix
Vasjen Katro / Baugasm

———

photoshopishiring.com

‘Could we just put Photoshop on the iPag?’

- David Howe

Demo

, © 2019 Adobe. All Rights Reserved.

Photoshop CC File Edit Image Layer Type Select Filter 3D View Window Help) = Wed517PM Q § =

‘Fundamental Skills

Fix a photo

Make creative effects

Painting

© 2019 Adobe. All Rights Reserved.

Challenge: Photoshop is Complex

& PhotoshopCC File Edit Image Layer Type Select Filter 3D View Window Help B @00 QOBBO L VU & Wedsl7PM Q Q =

© 2019 Adobe. All Rights Reserved. 6 '
A\

Challenge: Photoshop is Complex

. There is no explicit model

@ PhotoshopCC File Edit Image Layer Type Select Filter few indow Hel B @00 QOBBO LI O & Wedsl7PM Q @

AR Y
(o i+l .
L0 L L e }

3

© 2019 Adobe. All Rights Reserved. 6 '
A
Adobe

Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVCis:

D@00 OBBO L] O F Wed517PM

~

—
e

g g & :

- " 78

FL 2Y Make creative effects

Ll 6 L

L

Ll RS %, & :
(e l+ .-/ .
‘0‘1 2.3 . 4/5. .6 7 } :

© 2019 Adobe. All Rights Reserved. 6 '
A
Adobe

Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVCis:

. Data

(e l+ .-/ .
‘0‘1234567 } :

© 2019 Adobe. All Rights Reserved. 6 '
A
Adobe

Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVCis:

. Data

. Constraints and Relationships

LS % &
Dl . I I
Lo 1 o 3 212 6 7

© 2019 Adobe. All Rights Reserved. 6 '
A
Adobe

Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVC s;
- Data
. Constraints and Relationships
- Observable

LS % &
Dl . I I
Lo 1 o 3 212 6 7

© 2019 Adobe. All Rights Reserved. 6 '
A
Adobe

The Ul is the Model

A

Solution

@ PhotoshopCC File Edit Image Layer Type Select Filter 3D View Window Help B@®@O0O OHEBO L O

= Wed517PM Q @ =

© 2019 Adobe. All Rights Reserved. 8 '
A\

Solution

. Remove the visual representation from the Ul elements

@ W EPP s' e

e *lo]p e8]
@UD.% 0/a .00,

A8 B alg alale

o
n
[

v

-b e 5 @ ll'"-“[-: = L L>—;T

exoe | e olew 0OTDA® = oo

rsooooo-: l@
|
o aid— AL

@00 DOO 0 © wifje==
(——— g -l e }e
o . e e o v
_ae B S—- T sec0 e f e | SAB000 enA E--11

© 2019 Adobe. All Rights Reserved. 8

0N

Adobe

Solution

Remove the visual representation from the Ul elements

- Add the ability to bind to, to observe, Ul elements

@ P @’f’ 'O Rt WS o o e

4
&l
o
3 == :
| [01°10, 8.8 ¢
. Ga0g® 0/ eqg ey,
. ALt 8 alg alaly
T
‘ | | ! 9 n (@ = o
- — - e g @ D D e —
e ez === Slew 00TDE® =oo- a0
et [= =
= raooooo : |
cam
[o —
e)= ,
C——N) o |:
—° _® % o=y
o == ’D_
@ EmE= °
‘ - - @e=—r— ——— 0090
|=i== o | == (e o(°
!; oooooo = e Spem— 'Doo poo o o-ﬂc‘-
¥ - I ———
l -l Des © 1B ==
L =e p S—- AT S0 e - | SAGR000 eRA 200

© 2019 Adobe. All Rights Reserved.

° 0N

Adobe

Solution

. Remove the visual representation from the Ul elements
- Add the ability to bind to, to observe, Ul elements

. Lazily instantiate Ul elements as needed

© 2019 Adobe. All Rights Reserved. 8

Photoshop is not

© 2019 Adobe. All Rights Reserved.

-luid

Photoshop is not Fluid

- Largely Single Threaded

© 2019 Adobe. All Rights Reserved.

Photoshop is not Fluid

- Largely Single Threaded

- Except Low Level Image Processing

© 2019 Adobe. All Rights Reserved.

Photoshop is not Fluid

- Largely Single Threaded
- Except Low Level Image Processing

- User Input Interleaved with Rendering

© 2019 Adobe. All Rights Reserved. 9 '
A

Put Photoshop on a Separate Thread

© 2019 Adobe. All Rights Reserved.

10

Put Photoshop on a Separate Thread

. Free Ul thread to be Responsive

© 2019 Adobe. All Rights Reserved. 10 '
A\
Adobe

Put Photoshop on a Separate Thread

. Free Ul thread to be Responsive

- Runs independently, without blocking

© 2019 Adobe. All Rights Reserved. 10 '
A\
Adobe

Put Photoshop on a Separate Thread

. Free Ul thread to be Responsive

- Runs independently, without blocking

y N / /

4 T ¢

4\ S \
. \

© 2019 Adobe. All Rights Reserved. 10 '
A\
Adobe

Mantle

© 2019 Adobe. All Rights Reserved. 1 "‘
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application

© 2019 Adobe. All Rights Reserved. 11 '
A\
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application

© 2019 Adobe. All Rights Reserved. 11 '
A\
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application

- The model is a containment hierarchy

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.

. Properties present a rich interface

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.
. Properties present a rich interface

- read-only

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.
. Properties present a rich interface
. read-only

. disableable (dynamic read-only)

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.
. Properties present a rich interface
. read-only
. disableable (dynamic read-only)

. connectable (slot & signal)

2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application

- The model is a containment hierarchy

. app lication contains a collection of documents

. document contains a collection of Layers, etc.
. Properties present a rich interface

. read-only

. disableable (dynamic read-only)

. connectable (slot & signal)

. auto disconnect on object expiration

© 2019 Adobe. All Rights Reserved. 11 '
A
Adobe

Mantle

© 2019 Adobe. All Rights Reserved. 12 "‘
Adobe

Mantle

- The Mantle manages high speed communication with Core

© 2019 Adobe. All Rights Reserved. 12 '
A\
Adobe

Mantle

- The Mantle manages high speed communication with Core

- Communication is handled by "sending code’

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocumentx core_document) {
core_document->SaveDocument(cSave, cSave, file_type);
o

transaction, core_document);

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

ore_invoke (
[file_type] (TImageDocumentx core_document) {
core_document->SaveDocument(cSave, cSave, file_type);
F

transaction, core_document);

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Mantle

- The Mantle manages high speed communication with Core
Communication is handled by "sending code’

No serialization/deserialization overhead

core_invoke(
file type] (TImageDocumentx core_document) {
core_document—>SaveDocument(cSave, cSave, file type);

I

transaction, core_document);

© 2019 Adobe. All Rights Reserved. 12 '
A

Mantle

- The Mantle manages high speed communication with Core
Communication is handled by "sending code’

No serialization/deserialization overhead

core_invoke (R
[file_typel (TImageDocumentx ‘corerdocument) {
core_document—>SaveDocument(cSave, cSave, file type);
}

transaction, ‘core’document);

© 2019 Adobe. All Rights Reserved. 12 '
A

Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocument*x core_document) { |
¥

transaction, core_document);

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocument*x core_document) { |
core_document—>SaveDocument(cSave, cSave, file -
¥

transaction, core_document);

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocument*x core_document) {
core_document->SaveDocument(cSave, cSave, file_type);
oo |

iction, core_document);

© 2019 Adobe. All Rights Reserved. 12 '
A
Adobe

Transactions

© 2019 Adobe. All Rights Reserved. 13 '
A\
Adobe

Transactions

- Transaction system allows simple speculative execution

© 2019 Adobe. All Rights Reserved. 13 '
A\
Adobe

Transactions

- Transaction system allows simple speculative execution

. Self correcting

© 2019 Adobe. All Rights Reserved. 13 '
A\
Adobe

Transactions

- Transaction system allows simple speculative execution
. Self correcting

- Similar model to Apple's CoreAnimation

© 2019 Adobe. All Rights Reserved. 13 '
\‘
Adobe

Transactions

- Transaction system allows simple speculative execution
. Self correcting
- Similar model to Apple's CoreAnimation

. Programmer’s view (and user view) is instantaneous

© 2019 Adobe. All Rights Reserved. 13 '
\‘
Adobe

Transactions

- Transaction system allows simple speculative execution
. Self correcting
- Similar model to Apple's CoreAnimation

. Programmer’s view (and user view) is instantaneous

- Even with underlying latency

© 2019 Adobe. All Rights Reserved. 13 '
\‘
Adobe

Transactions

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count

- The transaction id is stored in a thread-local scope

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count
- The transaction id is stored in a thread-local scope

. Globally available to any notifiers

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count

- The transaction id is stored in a thread-local scope

. Globally available to any notifiers

. Notifications from core to mantle echo back the count

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count

- The transaction id is stored in a thread-local scope

. Globally available to any notifiers
. Notifications from core to mantle echo back the count

- If 3 mantle property receives an update with a
count less than the property count, the update is
ignored

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe

Transactions

class transaction {
public:
enum class id t : std::size t { initial = 0, none = std::numeric_ limits<std::size t>::max() };

transaction(id_t id) : _prior{current()} { current() = id; }
~transaction() { current() = _prior; }

static id t next() {
static std::atomic<std::size t> id{0};
return static cast<id t>(++id);

}

static id t& current() {
thread local id t id{id_t::none};
return 1id;

}

private:
id_t _prior;
¥

© 2019 Adobe. All Rights Reserved. 15

A

High Frequency Channels

© 2019 Adobe. All Rights Reserved. 16 '
A\
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed

. Screen update requests

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
. Screen update requests

- Property values changed by a slider

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
. Screen update requests
- Property values changed by a slider
- Painting

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
. Screen update requests
- Property values changed by a slider
- Painting

- Upon an initial event a coroutine is created and sent
to De processed on core

2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
. Screen update requests
- Property values changed by a slider
- Painting

- Upon an initial event a coroutine is created and sent
to De processed on core

. A direct communication channel is established from
sender to coroutine

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
. Screen update requests
- Property values changed by a slider
- Painting

- Upon an initial event a coroutine is created and sent
to De processed on core

. A direct communication channel is established from
sender to coroutine

. Subsequent messages are sent direct to the coroutine

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe

High Frequency Channels

© 2019 Adobe. All Rights Reserved. 17 '
A\
Adobe

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream

© 2019 Adobe. All Rights Reserved. 17 '
A
Adobe

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream

. Take latest value

© 2019 Adobe. All Rights Reserved. 17 '
A
Adobe

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value

. Coalesce values

© 2019 Adobe. All Rights Reserved. 17 '
A
Adobe

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value
- Coalesce values

- Process in preview mode

© 2019 Adobe. All Rights Reserved. 17 '
A
Adobe

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value
. Coalesce values
- Process in preview mode

- Cancel operations that are no longer necessary

© 2019 Adobe. All Rights Reserved. 17 '
A
Adobe

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value

. Coalesce values
- Process in preview mode
- Cancel operations that are no longer necessary

. Defer low-priority operations to completion

© 2019 Adobe. All Rights Reserved.

17 L}!

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value

. Coalesce values
- Process in preview mode
- Cancel operations that are no longer necessary

. Defer low-priority operations to completion

. Strategy is time based to maintain frame rate

© 2019 Adobe. All Rights Reserved.

17 A':l

High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value

. Coalesce values
- Process in preview mode
- Cancel operations that are no longer necessary

. Defer low-priority operations to completion

. Strategy is time based to maintain frame rate

- Not user event based (such as finger up/down)

© 2019 Adobe. All Rights Reserved.

17 A'd}l

template <class, class, class>
class latest;

template <class Executor, class Task, class... Args>
class latest<Executor, Task, void(Args...)> {

struct receiver {
Task _task;
std: imutex _mutex;
bool _queued+{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) {
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

¥

void invoke() {
std::tuple<Args...> value;
{
std::unique_lock<std::mutex> lock(_mutex); A
queued = false: Adobe

struct receiver {
Task _task;
std: :mutex _mutex;
bool queued{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move(value.get());

}

std::apply(_task, std::move(value));

b

FAN
Executor executor: Adobe

struct receiver {
Task _task;
std: :mutex _mutex;
bool _queued{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move(value.get());

}

std::apply(_task, std::move(value));

b

N
Executor executor: Adobe

struct receiver {
Task _task;

std: :mutex _mutex;

bool _queued+{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move(value.get());

}

std::apply(_task, std::move(value));
};

N
Executor executor: Adobe

struct receiver {
Task _task;
std: :mutex _mutex;
bool _queued{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move(value.get());

}

std::apply(_task, std::move(value));

b

N
Executor executor: Adobe

struct receiver {
Task _task;
std: :mutex _mutex;
bool queued{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move(value.get());

}

std::apply(_task, std::move(value));

b

N
Executor executor: Adobe

&

Executor _executor;
std::shared _ptr<receiver> _shared;

public:
template <class T, class F>

latest (T&& executor, F&& task)
: _executor{std::forward<T>(executor)}, shared{std::make_shared<receiver>(
std::forward<F>(task))} {}

template <class... T>
void operator()(T&&... arg) const {
if (! shared->send(std::forward<T>(arg)...)) {
_executor([_shared = shared] { shared->invoke(); });
}

b

template <class T, class Executor, class Task>

inline auto make_ latest(Executor&& executor, Task&& task) {
return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task) };

}

0N

Adobe

&

Executor _executor;
std::shared _ptr<receiver> _shared;

public:
template <class T, class F>

latest (T&& executor, F&& task)
: _executor{std::forward<T>(executor)}, shared{std::make_shared<receiver>(
std::forward<F>(task))} {}

template <class... T>
void operator()(T&&... arg) const {
if (! shared->send(std::forward<T>(arg)...)) {
_executor([_shared = shared] { shared->invoke(); });
}

b

template <class T, class Executor, class Task>

inline auto make_ latest(Executor&& executor, Task&& task) {
return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task) };

}

0N

Adobe

&

Executor _executor;
std::shared _ptr<receiver> _shared;

public:
template <class T, class F>

latest (T&& executor, F&& task)
: _executor{std::forward<T>(executor)}, shared{std::make_shared<receiver>(
std::forward<F>(task))} {}

template <class... T>
void operator()(T&&... arg) const {
if (! shared->send(std::forward<T>(arg)...)) {
_executor([_shared = shared] { shared->invoke(); });
}

b

template <class T, class Executor, class Task>

inline auto make_ latest(Executor&& executor, Task&& task) {
return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task) };

}

0N

Adobe

&

Executor _executor;
std::shared _ptr<receiver> _shared;

public:
template <class T, class F>
latest (T&& executor, F&& task)
: _executor{std::forward<T>(executor)}, shared{std::make_shared<receiver>(
std::forward<F>(task))} {}

template <class... T>
void operator()(T&&... arg) const {
if (! shared->send(std::forward<T>(arg)...)) {
_executor([_shared = shared] { shared->invoke(); });
}

b

template <class T, class Executor, class Task>
inline auto make_ latest(Executor&& executor, Task&& task) {

return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task)};
I3

0N

Adobe

High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n '= 3000; ++n) {
f(n);
¥

© 2019 Adobe. All Rights Reserved. 19 '
A\
Adobe

High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n '= 3000; ++n) {
f(n);
¥

470

1066
1143
1347
1454
1507
1698
1930
2219
2649
2999

© 2019 Adobe. All Rights Reserved. 19 '
\‘
Adobe

High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n '= 3000; ++n) {
f(n);
¥

470
1066
1143
1347
1454
1507
1698
1930
2219
2649
B 2999

© 2019 Adobe. All Rights Reserved. 19 '
\‘
Adobe

Mantle

© 2019 Adobe. All Rights Reserved. 20 "‘
Adobe

Mantle

. All communication with client on client thread

© 2019 Adobe. All Rights Reserved. 20 '
A\
Adobe

Mantle

. All communication with client on client thread

- The core and mantle are packaged as a library

© 2019 Adobe. All Rights Reserved. 20 '
A\
Adobe

Surface

© 2019 Adobe. All Rights Reserved. 1 '
A\
Adobe

Surface

. The Surface is a new, thin, Ul

Surface

A

Surface

. The Surface is a new, thin, Ul
. Binds to the Mantle

© 2019 Adobe. All Rights Reserved. 1 '
A\
Adobe

Surface

. The Surface is a new, thin, Ul
. Binds to the Mantle
- Model behaviors driven by the Core

© 2019 Adobe. All Rights Reserved. 1 '
A\
Adobe

Display System

© 2019 Adobe. All Rights Reserved. 22 '
A\
Adobe

Display System

. Canvas display consists of two layer

© 2019 Adobe. All Rights Reserved. 22 '
A\
Adobe

Display System

. Canvas display consists of two layer

- Background is screen resolution of entire document

© 2019 Adobe. All Rights Reserved. 22 '
A\
Adobe

Display System

. Canvas display consists of two layer
- Background is screen resolution of entire document

- Foreground is screen resolution* of visible area

© 2019 Adobe. All Rights Reserved. 22 '
A\
Adobe

Display System

. Canvas display consists of two layer
- Background is screen resolution of entire document

- Foreground is screen resolution* of visible area

. *Resolution may be adapted to maintain frame rate

© 2019 Adobe. All Rights Reserved. 22 '
A\
Adobe

Carrier & 100% [=p

Cancel Crop & Rotate

White Balance 4 - Contrast

© 2019 Adobe. All Rights Reserved. 23 '
A

© 2019 Adobe. All Rights Reserved. 24 '
A
Adobe

© 2019 Adobe. All Rights Reserved. 25 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 26 '
A\
Adobe

Carrier & 100% [=p

Cancel Crop & Rotate

White Balance 4 - Contrast

© 2019 Adobe. All Rights Reserved. 27 '
A

Carrier & 9:45 PM 100% [m=p

wtr e e BNk K

AT

" T X —
st 8tk) — o A S

Vig a o \fAE. Rt LB o S U)
TR b J{}"»‘ Y R Al e

D g Sy P - 0 j'l M ‘f»’f ;i.'
- - A i
..

- -
—

.

Cancel ’) Looks Adjustments Crop & Rotate @ Apply

Contrast e

CONTRAST CLARITY VIBRANCE

© 2019 Adobe. All Rights Reserved. 28 '
A\

Carrier & 9:46 PM 100% [mm=p

~da s ase s e i) ""— 5 TR

- 5 ju ¥ q » e A AL w e 44 b g M
TR A 2V A (L -:E’(‘_? PO SRS Vo e
L S _b'_‘.dl_ el o L0 4 ') ¥ T e iy

" P @

Cancel | ‘D | Looks Adjustments ’ Crop & Rotate @ | Apply

Contrast e

CONTRAST CLARITY VIBRANCE

© 2019 Adobe. All Rights Reserved. 29 '
A\

© 2019 Adobe. All Rights Reserved. 30 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 31 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 32 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 33 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 34 '
A\
Adobe

Carrier & 9:46 PM 100% [mm=p

~da s ase s e i) ""— 5 TR

- 5 ju ¥ q » e A AL w e 44 b g M
TR A 2V A (L -:E’(‘_? PO SRS Vo e
L S _b'_‘.dl_ el o L0 4 ') ¥ T e iy

" P @

Cancel | ‘D | Looks Adjustments ’ Crop & Rotate @ | Apply

Contrast e

CONTRAST CLARITY VIBRANCE

© 2019 Adobe. All Rights Reserved. 35 '
A\

Carrier & 10:01 PM 100% [=m=p

Cancel o | Looks Adjustments Crop & Rotate = Apply

Contrast e

CONTRAST CLARITY VIBRANCE

© 2019 Adobe. All Rights Reserved. 36 '
A\

© 2019 Adobe. All Rights Reserved. 37 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 38 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 39 '
A\
Adobe

© 2019 Adobe. All Rights Reserved. 40 '
A
Adobe

Photoshop on the iPad

© 2019 Adobe. All Rights Reserved. 41 '
A\
Adobe

Photoshop on the iPad

- Goal is to bring real photoshop to new devices and new customers

- Fast, fluid, and fully compatible with the desktop product

© 2019 Adobe. All Rights Reserved. 41 '
A\
Adobe

Photoshop on the iPad

- Goal is to bring real photoshop to new devices and new customers

- Fast, fluid, and fully compatible with the desktop product

- Enabled by just a few, simple, concepts

A

Photoshop on the iPad

- Goal is to bring real photoshop to new devices and new customers

- Fast, fluid, and fully compatible with the desktop product
- Enabled by just a few, simple, concepts

. photoshopishiringcom

A

