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‘Could we just put Photoshop on the iPag?’

- David Howe
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Photoshop CC File Edit Image Layer Type Select Filter 3D View Window Help ) = Wed517PM Q § =

‘Fundamental Skills

Fix a photo

Make creative effects

Painting
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Challenge: Photoshop is Complex
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Challenge: Photoshop is Complex

. There is no explicit model
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Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVCis:
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Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVCis:

. Data
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Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVCis:

. Data

. Constraints and Relationships
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Challenge: Photoshop is Complex

. There is no explicit model
- Amodel in MVC s;
- Data
. Constraints and Relationships
- Observable
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The Ul is the Model

A



Solution
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Solution

. Remove the visual representation from the Ul elements
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Solution

Remove the visual representation from the Ul elements

- Add the ability to bind to, to observe, Ul elements
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Solution

. Remove the visual representation from the Ul elements
- Add the ability to bind to, to observe, Ul elements

. Lazily instantiate Ul elements as needed
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Photoshop is not
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Photoshop is not Fluid

- Largely Single Threaded
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Photoshop is not Fluid

- Largely Single Threaded

- Except Low Level Image Processing
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Photoshop is not Fluid

- Largely Single Threaded
- Except Low Level Image Processing

- User Input Interleaved with Rendering
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Put Photoshop on a Separate Thread
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Put Photoshop on a Separate Thread

. Free Ul thread to be Responsive
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Put Photoshop on a Separate Thread

. Free Ul thread to be Responsive

- Runs independently, without blocking
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Put Photoshop on a Separate Thread

. Free Ul thread to be Responsive

- Runs independently, without blocking

y N / /

4 T ¢

4\ S \
. \

© 2019 Adobe. All Rights Reserved. 10 '
A\
Adobe



Mantle
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Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
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Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.
. Properties present a rich interface

- read-only
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Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.
. Properties present a rich interface
. read-only

. disableable (dynamic read-only)
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Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application
- The model is a containment hierarchy
. app lication contains a collection of documents
. document contains a collection of Layers, etc.
. Properties present a rich interface
. read-only
. disableable (dynamic read-only)
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Mantle

- The Mantle is an API layer that presents an observable, shadow, model of the application

- The model is a containment hierarchy

. app lication contains a collection of documents

. document contains a collection of Layers, etc.
. Properties present a rich interface

. read-only

. disableable (dynamic read-only)

. connectable (slot & signal)

. auto disconnect on object expiration
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Mantle
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Mantle

- The Mantle manages high speed communication with Core
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Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocumentx core_document) {
core_document->SaveDocument(cSave, cSave, file_type);
o

transaction, core_document);
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Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

ore_invoke (
[file_type] (TImageDocumentx core_document) {
core_document->SaveDocument(cSave, cSave, file_type);
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Mantle

- The Mantle manages high speed communication with Core
Communication is handled by "sending code’

No serialization/deserialization overhead

core_invoke(
file type] (TImageDocumentx core_document) {
core_document—>SaveDocument(cSave, cSave, file type);

I

transaction, core_document);
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Mantle

- The Mantle manages high speed communication with Core
Communication is handled by "sending code’

No serialization/deserialization overhead

core_invoke ( R
[file_typel (TImageDocumentx ‘corerdocument) {
core_document—>SaveDocument(cSave, cSave, file type);
}

transaction, ‘core’document);

© 2019 Adobe. All Rights Reserved. 12 '
A



Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocument*x core_document) { |
¥

transaction, core_document);
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Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocument*x core_document) { |
core_document—>SaveDocument(cSave, cSave, file -
¥

transaction, core_document);
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Mantle

- The Mantle manages high speed communication with Core
- Communication is handled by "sending code’

. No serialization/deserialization overhead

core_invoke(
[file_type] (TImageDocument*x core_document) {
core_document->SaveDocument(cSave, cSave, file_type);
oo |

iction, core_document);
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Transactions

- Transaction system allows simple speculative execution
. Self correcting
- Similar model to Apple's CoreAnimation

. Programmer’s view (and user view) is instantaneous
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Transactions

- Transaction system allows simple speculative execution
. Self correcting
- Similar model to Apple's CoreAnimation

. Programmer’s view (and user view) is instantaneous

- Even with underlying latency
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Transactions

© 2019 Adobe. All Rights Reserved. 14 '
A
Adobe



Transactions

- When a property is changed, the change is reflected immediately
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Transactions
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Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count

- The transaction id is stored in a thread-local scope

. Globally available to any notifiers

. Notifications from core to mantle echo back the count
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Transactions

- When a property is changed, the change is reflected immediately

- And the property is stamped with a transaction count

- Each property change message from mantle to core is associated the transaction count

- The transaction id is stored in a thread-local scope

. Globally available to any notifiers
. Notifications from core to mantle echo back the count

- If 3 mantle property receives an update with a
count less than the property count, the update is
ignored
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Transactions

class transaction {
public:
enum class id t : std::size t { initial = 0, none = std::numeric_ limits<std::size t>::max() };

transaction(id_t id) : _prior{current()} { current() = id; }
~transaction() { current() = _prior; }

static id t next() {
static std::atomic<std::size t> id{0};
return static cast<id t>(++id);

}

static id t& current() {
thread local id t id{id_t::none};
return 1id;

}

private:
id_t _prior;
¥
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High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
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High Frequency Channels

- A high frequency event is any event expected to occur faster than the events can be processed
. Screen update requests
- Property values changed by a slider
- Painting

- Upon an initial event a coroutine is created and sent
to De processed on core

. A direct communication channel is established from
sender to coroutine

. Subsequent messages are sent direct to the coroutine

© 2019 Adobe. All Rights Reserved. 16 '
A
Adobe



High Frequency Channels
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High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
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High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value

. Coalesce values
- Process in preview mode
- Cancel operations that are no longer necessary

. Defer low-priority operations to completion

. Strategy is time based to maintain frame rate
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High Frequency Channels

- The coroutine manages adapting to the performance requirements of the stream
. Take latest value

. Coalesce values
- Process in preview mode
- Cancel operations that are no longer necessary

. Defer low-priority operations to completion

. Strategy is time based to maintain frame rate

- Not user event based (such as finger up/down)
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template <class, class, class>
class latest;

template <class Executor, class Task, class... Args>
class latest<Executor, Task, void(Args...)> {

struct receiver {
Task _task;
std: imutex _mutex;
bool _queued+{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) {
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

¥

void invoke() {
std::tuple<Args...> value;
{
std::unique_lock<std::mutex> lock(_mutex); A
queued = false: Adobe



struct receiver {
Task _task;
std: :mutex _mutex;
bool queued{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move( value.get());

}

std::apply(_task, std::move(value));

b
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Executor executor: Adobe
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struct receiver {
Task _task;

std: :mutex _mutex;

bool _queued+{false}; // is a task queued already
std::optional<std::tuple<Args...>> _value; // message value

template <class F>
explicit receiver(F&& f) : _task(std::forward<F>(f)) {}

template <class... T>
bool send(T&&... arg) A
bool queued = true;
std::unique_lock<std::mutex> lock(_mutex);
_value = std::make_tuple(std::forward<T>(arg)...);
std::swap(queued, _queued);
return queued;

}

void invoke() {
std::tuple<Args...> value;

{
std::unique_lock<std::mutex> lock(_mutex);
_queued = false;
value = std::move( value.get());

}

std::apply(_task, std::move(value));
};

N
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Executor _executor;
std::shared _ptr<receiver> _shared;

public:
template <class T, class F>

latest (T&& executor, F&& task)
: _executor{std::forward<T>(executor)}, shared{std::make_shared<receiver>(
std::forward<F>(task))} {}

template <class... T>
void operator()(T&&... arg) const {
if (! shared->send(std::forward<T>(arg)...)) {
_executor([_shared = shared] { shared->invoke(); });
}

b

template <class T, class Executor, class Task>

inline auto make_ latest(Executor&& executor, Task&& task) {
return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task) };

}
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Executor _executor;
std::shared _ptr<receiver> _shared;

public:
template <class T, class F>
latest (T&& executor, F&& task)
: _executor{std::forward<T>(executor)}, shared{std::make_shared<receiver>(
std::forward<F>(task))} {}

template <class... T>
void operator()(T&&... arg) const {
if (! shared->send(std::forward<T>(arg)...)) {
_executor([_shared = shared] { shared->invoke(); });
}

b

template <class T, class Executor, class Task>
inline auto make_ latest(Executor&& executor, Task&& task) {

return latest<Executor, Task, T>{std::forward<Executor>(executor), std::forward<Task>(task)};
I3
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High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n '= 3000; ++n) {
f(n);
¥
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High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n '= 3000; ++n) {
f(n);
¥

470

1066
1143
1347
1454
1507
1698
1930
2219
2649
2999
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High Frequency Channels

auto f = make_latest<void(int)>(serial_queue, [](int x) { cout << x << '\n'; });

for (int n = 0; n '= 3000; ++n) {
f(n);
¥

470
1066
1143
1347
1454
1507
1698
1930
2219
2649
B 2999
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Mantle

. All communication with client on client thread
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Mantle

. All communication with client on client thread

- The core and mantle are packaged as a library
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. The Surface is a new, thin, Ul
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Surface

. The Surface is a new, thin, Ul
. Binds to the Mantle
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Surface

. The Surface is a new, thin, Ul
. Binds to the Mantle
- Model behaviors driven by the Core
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Display System

. Canvas display consists of two layer
- Background is screen resolution of entire document

- Foreground is screen resolution* of visible area

. *Resolution may be adapted to maintain frame rate
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Photoshop on the iPad
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Photoshop on the iPad

- Goal is to bring real photoshop to new devices and new customers

- Fast, fluid, and fully compatible with the desktop product
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Photoshop on the iPad

- Goal is to bring real photoshop to new devices and new customers

- Fast, fluid, and fully compatible with the desktop product
- Enabled by just a few, simple, concepts

. photoshopishiringcom
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