
Sponsored by:

Gold

Bronze

Community

Generic Programming
Sean Parent | Principal Scientist

© 2018 Adobe. All Rights Reserved.

“You cannot fully grasp mathematics until you understand
its historical context.” – Alex Stepanov

3

© 2018 Adobe. All Rights Reserved.

1988

4

© 2018 Adobe. All Rights Reserved. 5

© 2018 Adobe. All Rights Reserved.

1988

#1 Song: Faith, George Michael

#1 Movie: Rain Man

Winter Olympic Games in Calgary, Alberta, Canada

US Senate ratifies INF treaty between US and Soviet Union

Ronald Regan & Mikhail Gorbachev

George H. W. Bush wins US Presidential Election

6

© 2018 Adobe. All Rights Reserved.

1988

#1 Song: Faith, George Michael

#1 Movie: Rain Man

Winter Olympic Games in Calgary, Alberta, Canada

US Senate ratifies INF treaty between US and Soviet Union

Ronald Regan & Mikhail Gorbachev

George H. W. Bush wins US Presidential Election

6

© 2018 Adobe. All Rights Reserved. 7

© 2018 Adobe. All Rights Reserved. 7

© 2018 Adobe. All Rights Reserved. 7

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
8

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
9

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
10

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
11

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
12

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
13

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
14

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
15

© 2018 Adobe. All Rights Reserved.

“By generic programming we mean the definition of
algorithms and data structures at an abstract or

generic level, thereby accomplishing many related
programming tasks simultaneously. The central notion
is that of generic algorithms, which are parameterized
procedural schemata that are completely independent
of the underlying data representation and are derived

from concrete, efficient algorithms.”
16

© 2018 Adobe. All Rights Reserved.

1976-1987

17

© 2018 Adobe. All Rights Reserved. 18

© 2018 Adobe. All Rights Reserved.

1976 Parallel Computation and Associative Property

19

© 2018 Adobe. All Rights Reserved.

1976 Parallel Computation and Associative Property

19

A binary operation ∙ on a set S is called associative if it satisfies the associative law:

(x ∙ y) ∙ z = x ∙ (y ∙ z) for all x, y, z in S .

© 2018 Adobe. All Rights Reserved.

1976 Parallel Computation and Associative Property

Parallel reduction is associated with monoids

19

A binary operation ∙ on a set S is called associative if it satisfies the associative law:

(x ∙ y) ∙ z = x ∙ (y ∙ z) for all x, y, z in S .

© 2018 Adobe. All Rights Reserved.

Software is associated with Algebraic Structures

20

© 2018 Adobe. All Rights Reserved.

1981 Tecton

The Tecton language

21

G E N E R A L E L E C T R I C
GENERAL ELECTRIC COMPANY
CORPORATE RESEARCH AND DEVELOPMENT
P.O. Box 43, Schenectady, N.Y. 12301 U.S.A.

REPRINT 9681

TECTON: A LANGUAGE FOR MANIPULATING
GENERIC OBJECTS

D. Kapur, D.R. Musser, and A.A. Stepanov

© 2018 Adobe. All Rights Reserved.

1981 Tecton

The Tecton language

21

G E N E R A L E L E C T R I C
GENERAL ELECTRIC COMPANY
CORPORATE RESEARCH AND DEVELOPMENT
P.O. Box 43, Schenectady, N.Y. 12301 U.S.A.

REPRINT 9681

TECTON: A LANGUAGE FOR MANIPULATING
GENERIC OBJECTS

D. Kapur, D.R. Musser, and A.A. Stepanov

© 2018 Adobe. All Rights Reserved.

1986-87 Libraries

Higher Order Programming

22

Higher Order Programming

Copyright 0 1 9 8 6 by
Alexander A. Stepanov, Aaron Kershenbaum and David R. Musser

March 5 , 1987

Polvtechnic
' lnsfitute

USING TOURNAMENT TREES TO SORT

ALEXANDER STEPANOV AND AARON KERSHENBAUM

Polytechnic University
333 Jay Street
Brooklyn, New York 11201

Center for Advanced Technology
In Telecommunications

C.A.T.T. Technical Report 86- 13

CENTER FOR
ADVANCED

TECHNOLOGY IN
TELECOMMUNICATIONS

© 2018 Adobe. All Rights Reserved.

1986-87 Libraries

Higher Order Programming

22

Higher Order Programming

Copyright 0 1 9 8 6 by
Alexander A. Stepanov, Aaron Kershenbaum and David R. Musser

March 5 , 1987

Polvtechnic
' lnsfitute

USING TOURNAMENT TREES TO SORT

ALEXANDER STEPANOV AND AARON KERSHENBAUM

Polytechnic University
333 Jay Street
Brooklyn, New York 11201

Center for Advanced Technology
In Telecommunications

C.A.T.T. Technical Report 86- 13

CENTER FOR
ADVANCED

TECHNOLOGY IN
TELECOMMUNICATIONS

© 2018 Adobe. All Rights Reserved.

1987

23

© 2018 Adobe. All Rights Reserved.

1987

Alex works briefly at Bell Labs

23

© 2018 Adobe. All Rights Reserved.

1987

Alex works briefly at Bell Labs

Starts a friendship with Bjarne Stroustrup

23

© 2018 Adobe. All Rights Reserved.

1987

Alex works briefly at Bell Labs

Starts a friendship with Bjarne Stroustrup

Andrew Koenig explains the C machine

23

© 2018 Adobe. All Rights Reserved.

1987

Alex works briefly at Bell Labs

Starts a friendship with Bjarne Stroustrup

Andrew Koenig explains the C machine

Reads Ken Thompson’s and Rob Pike’s code for Unix and Plan 9

23

© 2018 Adobe. All Rights Reserved.

1987

24

© 2018 Adobe. All Rights Reserved.

1987

Leonhard Euler

24

© 2018 Adobe. All Rights Reserved.

1987

Leonhard Euler

24

© 2018 Adobe. All Rights Reserved.

1987

Leonhard Euler

“De-Bourbakized”

24

© 2018 Adobe. All Rights Reserved.

1987

Leonhard Euler

“De-Bourbakized”

Nicolas Bourbaki

24

© 2018 Adobe. All Rights Reserved.

1987

Leonhard Euler

“De-Bourbakized”

Nicolas Bourbaki

24

© 2018 Adobe. All Rights Reserved. 25

© 2018 Adobe. All Rights Reserved.

Knowledge is founded on the basis of precise, quantitative laws

25

© 2018 Adobe. All Rights Reserved.

Knowledge is founded on the basis of precise, quantitative laws
Mathematics is discovery, not invention

25

© 2018 Adobe. All Rights Reserved.

Software is defined on Algebraic Structures

26

© 2018 Adobe. All Rights Reserved.

1988

27

© 2018 Adobe. All Rights Reserved. 28

© 2018 Adobe. All Rights Reserved. 29

© 2018 Adobe. All Rights Reserved. 30

© 2018 Adobe. All Rights Reserved. 31

© 2018 Adobe. All Rights Reserved. 32

© 2018 Adobe. All Rights Reserved. 33

© 2018 Adobe. All Rights Reserved. 33

© 2018 Adobe. All Rights Reserved.

- All grid coordinates are integers.

- All grid lines are infinitely thin.

These concepts are important! …they mean that all elements
represented on the coordinate plane are mathematically pure.
Mathematical calculations using integer arithmetic will produce
intuitively correct results. If you keep in mind that the grid lines
are infinitely thin, you’ll never have “endpoint paranoia” — the
confusion that results from not knowing whether that last dot is
included in the line.

34

© 2018 Adobe. All Rights Reserved.

Gather

35

p

l

f template <typename I, // I models BidirectionalIterator

 typename S> // S models UnaryPredicate

auto gather(I f, I l, I p, S s) -> pair<I, I>

{

 return { stable_partition(f, p, not1(s)),

 stable_partition(p, l, s) };

}

© 2018 Adobe. All Rights Reserved.

Gather

35

template <typename I, // I models BidirectionalIterator

 typename S> // S models UnaryPredicate

auto gather(I f, I l, I p, S s) -> pair<I, I>

{

 return { stable_partition(f, p, not1(s)),

 stable_partition(p, l, s) };

}

© 2018 Adobe. All Rights Reserved.

For a sequence of n elements there are n + 1 positions

36

© 2018 Adobe. All Rights Reserved.

1993

37

© 2018 Adobe. All Rights Reserved.

1993

Movie: Jurassic Park

Bombing of World Trade Center

Bill Clinton sworn in

Video Games: Doom and MYST

38

© 2018 Adobe. All Rights Reserved.

1993

Movie: Jurassic Park

Bombing of World Trade Center

Bill Clinton sworn in

Video Games: Doom and MYST

38

© 2018 Adobe. All Rights Reserved.

1993

Alex resumes work on Generic Programming

Andrew Koenig suggests writing a standard library proposal

39

© 2018 Adobe. All Rights Reserved.

1994

40

© 2018 Adobe. All Rights Reserved. 41

The Standard Template Library

Alexander Stepanov

Silicon Graphics Inc.
2011 N. Shoreline Blvd.

Mt. View, CA 94043
stepanov@mti.sgi.com

Meng Lee

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

lee@hpl.hp.com

October 31, 1995

© 2018 Adobe. All Rights Reserved. 41

The Standard Template Library

Alexander Stepanov

Silicon Graphics Inc.
2011 N. Shoreline Blvd.

Mt. View, CA 94043
stepanov@mti.sgi.com

Meng Lee

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

lee@hpl.hp.com

October 31, 1995

© 2018 Adobe. All Rights Reserved.

1983

42

© 2018 Adobe. All Rights Reserved. 43

By Jon Bentley

programming
pearts

WRITING CORRECT PROGRAMS
In the late 1960s people were talking about the promise of
programs that verify the correctness of other programs. Unfor-
tunately, it is now the middle of the 1980s, and, with precious
few exceptions, there is still little more than talk about auto-
mated verification systems. Despite unrealized expectations,
however, the research on program verification has given us
something far more valuable than a black box that gobbles
programs and flashes "good" or "bad"--we now have a funda-
mental understanding of computer programming.

The purpose of this column is to show how that fundamen-
tal understanding can help programmers write correct pro-
grams. But before we get to the subject itself, we must keep it
in perspective. Coding skill is just one small part of writing
correct programs. The majority of the task is the subject of the
three previous columns: problem definition, algorithm design,
and data structure selection. If you perform those tasks well,
then writing correct code is usually easy.

The Challenge of Binary Search
Even with the best of designs, every now and then a program-
mer has to write subtle code. This column is about one prob-
lem that requires particularly careful code: binary search.
After defining the problem and sketching an algorithm to
solve it, we'll use principles of program verification in several
stages as we develop the program.

The problem is to determine whether the sorted array
X[1. . N] contains the element T. Precisely, we know that N
> 0 and that X[1] < X[2] < . . - < X[N]. The types of T and
the elements of X are the same; the pseudocode should work
equally well for integers, reals or strings. The answer is stored
in the integer P (for position); when P is zero T is not in
X[1 .. N], otherwise 1 < P _< N and T = X[P].

Binary search solves the problem by keeping track of a
range within the array in which T must be if it is anywhere
in the array. Initially, the range is the entire array. The range
is diminished by comparing its middle element to T and
discarding half the range. This process continues until T is
discovered in the array or until the range in which it must lie
is known to be empty. The process makes roughly logs N
comparisons.

Most programmers think that with the above description in
hand, writing the code is easy; they're wrong. The only way
you'll believe this is by putting down this column right now,
and writing the code yourself. Try it.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1983 ACM 0001-0782/83/1200-1040 75¢

I've given this problem as an in-class assignment in courses
at Bell Labs and IBM. The professional programmers had one
hour (sometimes more) to convert the above description into a
program in the language of their choice; a high-level pseudo-
code was fine. At the end of the specified time, almost all the
programmers reported that they had correct code for the task.
We would then take 30 minutes to examine their code,
which the programmers did with test cases. In many different
classes and with over a hundred programmers, the results
varied little: 90 percent of the programmers found bugs in
their code (and I wasn't always convinced of the correctness
of the code in which no bugs were found).

I found this amazing: only about 10 percent of professional
programmers were able to get this small program right. But
they aren't the only ones to find this task difficult. In the
history in Section 6.2.1 of his Sorting and Searching, Knuth
points out that while the first binary search was published in
1946, the first published binary search without bugs did not
appear until 1962.

Writing The Program
The key idea of binary search is that we always know that if
T is anywhere in X[1. . N], then it must be in a certain range
of X. We'll use the shorthand MustBe(range) to mean that if T
is anywhere in the array, then it must be in range. With this
notation, it's easy to convert the above description of binary
search into a program sketch.

initialize range to designate X[I..N]
loop

{ invariant: MustBe(range) 1
if range is empty,

return that T is nowhere in the
array

compute M, the middle of the range
use M as a probe to shrink the range

if T is found during the
shrinking process, return its
position

endloop

The crucial part of this program is the loop invariant, which
is enclosed in {}'s. This is an assertion about the program state
that is invariantly true at the beginning and end of each
iteration of the loop (hence its name); it formalizes the intui-
tive notion we had above.

We'll now refine the program, making sure that all our
actions respect the invariant. The first issue we must face is
the representation of range: we'll use two indices L and U (for
"lower" and "upper") to represent the range L . . U. (There are
other possible representations for a range, such as its begin-

1040 Communications of the ACM December 1983 Volume 26 Number 12

© 2018 Adobe. All Rights Reserved. 43

By Jon Bentley

programming
pearts

WRITING CORRECT PROGRAMS
In the late 1960s people were talking about the promise of
programs that verify the correctness of other programs. Unfor-
tunately, it is now the middle of the 1980s, and, with precious
few exceptions, there is still little more than talk about auto-
mated verification systems. Despite unrealized expectations,
however, the research on program verification has given us
something far more valuable than a black box that gobbles
programs and flashes "good" or "bad"--we now have a funda-
mental understanding of computer programming.

The purpose of this column is to show how that fundamen-
tal understanding can help programmers write correct pro-
grams. But before we get to the subject itself, we must keep it
in perspective. Coding skill is just one small part of writing
correct programs. The majority of the task is the subject of the
three previous columns: problem definition, algorithm design,
and data structure selection. If you perform those tasks well,
then writing correct code is usually easy.

The Challenge of Binary Search
Even with the best of designs, every now and then a program-
mer has to write subtle code. This column is about one prob-
lem that requires particularly careful code: binary search.
After defining the problem and sketching an algorithm to
solve it, we'll use principles of program verification in several
stages as we develop the program.

The problem is to determine whether the sorted array
X[1. . N] contains the element T. Precisely, we know that N
> 0 and that X[1] < X[2] < . . - < X[N]. The types of T and
the elements of X are the same; the pseudocode should work
equally well for integers, reals or strings. The answer is stored
in the integer P (for position); when P is zero T is not in
X[1 .. N], otherwise 1 < P _< N and T = X[P].

Binary search solves the problem by keeping track of a
range within the array in which T must be if it is anywhere
in the array. Initially, the range is the entire array. The range
is diminished by comparing its middle element to T and
discarding half the range. This process continues until T is
discovered in the array or until the range in which it must lie
is known to be empty. The process makes roughly logs N
comparisons.

Most programmers think that with the above description in
hand, writing the code is easy; they're wrong. The only way
you'll believe this is by putting down this column right now,
and writing the code yourself. Try it.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1983 ACM 0001-0782/83/1200-1040 75¢

I've given this problem as an in-class assignment in courses
at Bell Labs and IBM. The professional programmers had one
hour (sometimes more) to convert the above description into a
program in the language of their choice; a high-level pseudo-
code was fine. At the end of the specified time, almost all the
programmers reported that they had correct code for the task.
We would then take 30 minutes to examine their code,
which the programmers did with test cases. In many different
classes and with over a hundred programmers, the results
varied little: 90 percent of the programmers found bugs in
their code (and I wasn't always convinced of the correctness
of the code in which no bugs were found).

I found this amazing: only about 10 percent of professional
programmers were able to get this small program right. But
they aren't the only ones to find this task difficult. In the
history in Section 6.2.1 of his Sorting and Searching, Knuth
points out that while the first binary search was published in
1946, the first published binary search without bugs did not
appear until 1962.

Writing The Program
The key idea of binary search is that we always know that if
T is anywhere in X[1. . N], then it must be in a certain range
of X. We'll use the shorthand MustBe(range) to mean that if T
is anywhere in the array, then it must be in range. With this
notation, it's easy to convert the above description of binary
search into a program sketch.

initialize range to designate X[I..N]
loop

{ invariant: MustBe(range) 1
if range is empty,

return that T is nowhere in the
array

compute M, the middle of the range
use M as a probe to shrink the range

if T is found during the
shrinking process, return its
position

endloop

The crucial part of this program is the loop invariant, which
is enclosed in {}'s. This is an assertion about the program state
that is invariantly true at the beginning and end of each
iteration of the loop (hence its name); it formalizes the intui-
tive notion we had above.

We'll now refine the program, making sure that all our
actions respect the invariant. The first issue we must face is
the representation of range: we'll use two indices L and U (for
"lower" and "upper") to represent the range L . . U. (There are
other possible representations for a range, such as its begin-

1040 Communications of the ACM December 1983 Volume 26 Number 12

© 2018 Adobe. All Rights Reserved.

“I’ve assigned this problem [binary search] in courses at Bell
Labs and IBM. Professional programmers had a couple of

hours to convert the description into a programming
language of their choice; a high-level pseudo code was

fine… Ninety percent of the programmers found bugs in
their programs (and I wasn’t always convinced of the

correctness of the code in which no bugs were found).”

– Jon Bentley, Programming Pearls

44

© 2018 Adobe. All Rights Reserved.

“I want to hire the other ten percent.”

– Mark Hamburg , Photoshop Lead

45

© 2018 Adobe. All Rights Reserved.

“I want to hire the other ten percent.”

– Mark Hamburg , Photoshop Lead

45

© 2018 Adobe. All Rights Reserved.

“I want to hire the other ten percent.”

– Mark Hamburg , Photoshop Lead

45

© 2018 Adobe. All Rights Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

46

© 2018 Adobe. All Rights Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

46

© 2018 Adobe. All Rights Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

46

© 2018 Adobe. All Rights Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

46

© 2018 Adobe. All Rights Reserved.

Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
 int l = 0;
 int u = n - 1;

 while (true) {
 if (l > u) return -1;

 int m = (l + u) / 2;

 if (x[m] < v) l = m + 1;
 else if (x[m] == v) return m;
 else /* (x[m] > v) */ u = m - 1;
 }
}

46

© 2018 Adobe. All Rights Reserved.

STL implementation

template <class I, // I models ForwardIterator
 class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
 while (f != l) {
 auto m = next(f, distance(f, l) / 2);

 if (*m < v) f = next(m);
 else l = m;
 }
 return f;
}

47

© 2018 Adobe. All Rights Reserved.

STL implementation

template <class I, // I models ForwardIterator
 class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
 while (f != l) {
 auto m = next(f, distance(f, l) / 2);

 if (*m < v) f = next(m);
 else l = m;
 }
 return f;
}

47

© 2018 Adobe. All Rights Reserved.

STL implementation

template <class I, // I models ForwardIterator
 class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
 while (f != l) {
 auto m = next(f, distance(f, l) / 2);

 if (*m < v) f = next(m);
 else l = m;
 }
 return f;
}

47

© 2018 Adobe. All Rights Reserved.

STL implementation

template <class I, // I models ForwardIterator
 class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
 while (f != l) {
 auto m = next(f, distance(f, l) / 2);

 if (*m < v) f = next(m);
 else l = m;
 }
 return f;
}

47

© 2018 Adobe. All Rights Reserved.

STL implementation

template <class I, // I models ForwardIterator
 class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
 while (f != l) {
 auto m = next(f, distance(f, l) / 2);

 if (*m < v) f = next(m);
 else l = m;
 }
 return f;
}

47

© 2018 Adobe. All Rights Reserved.

STL implementation

template <class I, // I models ForwardIterator
 class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
 while (f != l) {
 auto m = next(f, distance(f, l) / 2);

 if (*m < v) f = next(m);
 else l = m;
 }
 return f;
}

47

© 2018 Adobe. All Rights Reserved.

1998

48

© 2018 Adobe. All Rights Reserved. 49

B C Reference number
ISO/IEC 14882:1998(E)

INTERNATIONAL
STANDARD

ISO/IEC
14882

First edition
1998-09-01

Programming languages — C++
Langages de programmation — C++

Processed and adopted by ASC X3 and approved by ANSI
as an American National Standard.

Date of ANSI Approval: 7/27/98

Published by American National Standards Institute,
11 West 42nd Street, New York, New York 10036

Copyright ©1998 by Information Technology Industry Council
(ITI). All rights reserved.

These materials are subject to copyright claims of International
Standardization Organization (ISO), International
Electrotechnical Commission (IEC), American National
Standards Institute (ANSI), and Information Technology
Industry Council (ITI). Not for resale. No part of this
publication may be reproduced in any form, including an
electronic retrieval system, without the prior written permission
of ITI. All requests pertaining to this standard should be
submitted to ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

© 2018 Adobe. All Rights Reserved. 49

B C Reference number
ISO/IEC 14882:1998(E)

INTERNATIONAL
STANDARD

ISO/IEC
14882

First edition
1998-09-01

Programming languages — C++
Langages de programmation — C++

Processed and adopted by ASC X3 and approved by ANSI
as an American National Standard.

Date of ANSI Approval: 7/27/98

Published by American National Standards Institute,
11 West 42nd Street, New York, New York 10036

Copyright ©1998 by Information Technology Industry Council
(ITI). All rights reserved.

These materials are subject to copyright claims of International
Standardization Organization (ISO), International
Electrotechnical Commission (IEC), American National
Standards Institute (ANSI), and Information Technology
Industry Council (ITI). Not for resale. No part of this
publication may be reproduced in any form, including an
electronic retrieval system, without the prior written permission
of ITI. All requests pertaining to this standard should be
submitted to ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

© 2018 Adobe. All Rights Reserved. 50

Exception-Safety in Generic Components
Lessons Learned from Specifying Exception-Safety

for the C++ Standard Library

David Abrahams

Dragon Systems
David Abrahams@dragonsys.com

Abstract. This paper represents the knowledge accumulated in response
to a real-world need: that the C++ Standard Template Library exhibit
useful and well-defined interactions with exceptions, the error-handling
mechanism built-in to the core C++ language. It explores the meaning of
exception-safety, reveals surprising myths about exceptions and generic-
ity, describes valuable tools for reasoning about program correctness, and
outlines an automated testing procedure for verifying exception-safety.

Keywords: exception-safety, exceptions, STL, C++

1 What Is Exception-Safety?

Informally, exception-safety in a component means that it exhibits reasonable
behavior when an exception is thrown during its execution. For most people,
the term “reasonable” includes all the usual expectations for error-handling:
that resources should not be leaked, and that the program should remain in a
well-defined state so that execution can continue. For most components, it also
includes the expectation that when an error is encountered, it is reported to the
caller.

More formally, we can describe a component as minimally exception-safe
if, when exceptions are thrown from within that component, its invariants are
intact. Later on we’ll see that at least three different levels of exception-safety
can be usefully distinguished. These distinctions can help us to describe and
reason about the behavior of large systems.

In a generic component, we usually have an additional expectation of excep-
tion-neutrality, which means that exceptions thrown by a component’s type pa-
rameters should be propagated, unchanged, to the component’s caller.

2 Myths and Superstitions

Exception-safety seems straightforward so far: it doesn’t constitute anything
more than we’d expect from code using more traditional error-handling tech-
niques. It might be worthwhile, however, to examine the term from a psycholog-
ical viewpoint. Nobody ever spoke of “error-safety” before C++ had exceptions.

M. Jazayeri, R. Loos, D. Musser (Eds.): Generic Programming ’98, LNCS 1766, pp. 69–79, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

© 2018 Adobe. All Rights Reserved. 50

Exception-Safety in Generic Components
Lessons Learned from Specifying Exception-Safety

for the C++ Standard Library

David Abrahams

Dragon Systems
David Abrahams@dragonsys.com

Abstract. This paper represents the knowledge accumulated in response
to a real-world need: that the C++ Standard Template Library exhibit
useful and well-defined interactions with exceptions, the error-handling
mechanism built-in to the core C++ language. It explores the meaning of
exception-safety, reveals surprising myths about exceptions and generic-
ity, describes valuable tools for reasoning about program correctness, and
outlines an automated testing procedure for verifying exception-safety.

Keywords: exception-safety, exceptions, STL, C++

1 What Is Exception-Safety?

Informally, exception-safety in a component means that it exhibits reasonable
behavior when an exception is thrown during its execution. For most people,
the term “reasonable” includes all the usual expectations for error-handling:
that resources should not be leaked, and that the program should remain in a
well-defined state so that execution can continue. For most components, it also
includes the expectation that when an error is encountered, it is reported to the
caller.

More formally, we can describe a component as minimally exception-safe
if, when exceptions are thrown from within that component, its invariants are
intact. Later on we’ll see that at least three different levels of exception-safety
can be usefully distinguished. These distinctions can help us to describe and
reason about the behavior of large systems.

In a generic component, we usually have an additional expectation of excep-
tion-neutrality, which means that exceptions thrown by a component’s type pa-
rameters should be propagated, unchanged, to the component’s caller.

2 Myths and Superstitions

Exception-safety seems straightforward so far: it doesn’t constitute anything
more than we’d expect from code using more traditional error-handling tech-
niques. It might be worthwhile, however, to examine the term from a psycholog-
ical viewpoint. Nobody ever spoke of “error-safety” before C++ had exceptions.

M. Jazayeri, R. Loos, D. Musser (Eds.): Generic Programming ’98, LNCS 1766, pp. 69–79, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

© 2018 Adobe. All Rights Reserved. 51

1

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Keywords: Generic programming, operator semantics, concept, regular type.

Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces. Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers. We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.

Copyright  Springer-Verlag. Appears in Lecture Notes in Computer Science
(LNCS) volume 1766. See http://www.springer.de/comp/lncs/index.html .

© 2018 Adobe. All Rights Reserved. 51

1

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Keywords: Generic programming, operator semantics, concept, regular type.

Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces. Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers. We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.

Copyright  Springer-Verlag. Appears in Lecture Notes in Computer Science
(LNCS) volume 1766. See http://www.springer.de/comp/lncs/index.html .

© 2018 Adobe. All Rights Reserved.

“We call the set of axioms satisfied by a data
type and a set of operations on it a concept.”

52

© 2018 Adobe. All Rights Reserved.

“We call the set of axioms satisfied by a data
type and a set of operations on it a concept.”

53

© 2018 Adobe. All Rights Reserved.

“Since we wish to extend semantics as well as syntax from built-
in types to user types, we introduce the idea of a regular type,

which matches the built-in type semantics, thereby making our
user-defined types behave like built-in types as well.”

54

© 2018 Adobe. All Rights Reserved.

“Since we wish to extend semantics as well as syntax from built-
in types to user types, we introduce the idea of a regular type,

which matches the built-in type semantics, thereby making our
user-defined types behave like built-in types as well.”

55

© 2018 Adobe. All Rights Reserved.

2002

56

© 2018 Adobe. All Rights Reserved. 57

© 2018 Adobe. All Rights Reserved. 57

© 2018 Adobe. All Rights Reserved. 57

© 2018 Adobe. All Rights Reserved. 57

© 2018 Adobe. All Rights Reserved. 58

NOTES ON THE FOUNDATIONS OF PROGRAMMING

ALEX STEPANOV AND MAT MARCUS

Disclaimer: Please do not redistribute. Instead, requests for a current draft should go
to Mat Marcus. These notes are a work in progress and do not constitute a book. In
particular, most of the current effort is directed towards writing up new material. As a
consequence little time remains for structuring, refinement, or clean up, so please be pa-
tient. Nevertheless, suggestions, comments and corrections are welcomed. Please reply to
mmarcus@adobe.com and stepanov@adobe.com.

1

© 2018 Adobe. All Rights Reserved. 58

NOTES ON THE FOUNDATIONS OF PROGRAMMING

ALEX STEPANOV AND MAT MARCUS

Disclaimer: Please do not redistribute. Instead, requests for a current draft should go
to Mat Marcus. These notes are a work in progress and do not constitute a book. In
particular, most of the current effort is directed towards writing up new material. As a
consequence little time remains for structuring, refinement, or clean up, so please be pa-
tient. Nevertheless, suggestions, comments and corrections are welcomed. Please reply to
mmarcus@adobe.com and stepanov@adobe.com.

1

© 2018 Adobe. All Rights Reserved.

2009

59

© 2018 Adobe. All Rights Reserved. 60

© 2018 Adobe. All Rights Reserved. 60

© 2018 Adobe. All Rights Reserved. 61

template <typename I, typename P>
 requires(Mutable(I) && ForwardIterator(I) &&
 UnaryPredicate(P) && ValueType(I) == Domain(P))
I partition_semistable(I f, I l, P p) {
 // Precondition: mutable_bounded_range(f, l)
 I i = find_if(f, l, p);
 if (i == l) return i;
 I j = successor(i);
 while (true) {
 j = find_if_not(j, l, p);
 if (j == l) return i;
 swap_step(i, j);
 }
}

© 2018 Adobe. All Rights Reserved. 61

template <typename I, typename P>
 requires(Mutable(I) && ForwardIterator(I) &&
 UnaryPredicate(P) && ValueType(I) == Domain(P))
I partition_semistable(I f, I l, P p) {
 // Precondition: mutable_bounded_range(f, l)
 I i = find_if(f, l, p);
 if (i == l) return i;
 I j = successor(i);
 while (true) {
 j = find_if_not(j, l, p);
 if (j == l) return i;
 swap_step(i, j);
 }
}

© 2018 Adobe. All Rights Reserved. 62

© 2018 Adobe. All Rights Reserved. 63

© 2018 Adobe. All Rights Reserved. 63

© 2018 Adobe. All Rights Reserved. 64

© 2018 Adobe. All Rights Reserved.

2006

65

© 2018 Adobe. All Rights Reserved. 66

Concepts: Linguistic Support for Generic Programming in C++

Douglas Gregor
Indiana University
dgregor@osl.iu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Jeremy Siek
Rice University

Jeremy.G.Siek@rice.edu

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu

Gabriel Dos Reis
Texas A&M University

gdr@cs.tamu.edu

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL

© 2018 Adobe. All Rights Reserved. 66

Concepts: Linguistic Support for Generic Programming in C++

Douglas Gregor
Indiana University
dgregor@osl.iu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Jeremy Siek
Rice University

Jeremy.G.Siek@rice.edu

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu

Gabriel Dos Reis
Texas A&M University

gdr@cs.tamu.edu

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL

© 2018 Adobe. All Rights Reserved. 66

Concepts: Linguistic Support for Generic Programming in C++

Douglas Gregor
Indiana University
dgregor@osl.iu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Jeremy Siek
Rice University

Jeremy.G.Siek@rice.edu

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu

Gabriel Dos Reis
Texas A&M University

gdr@cs.tamu.edu

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL

© 2018 Adobe. All Rights Reserved. 66

Concepts: Linguistic Support for Generic Programming in C++

Douglas Gregor
Indiana University
dgregor@osl.iu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Jeremy Siek
Rice University

Jeremy.G.Siek@rice.edu

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu

Gabriel Dos Reis
Texas A&M University

gdr@cs.tamu.edu

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL

© 2018 Adobe. All Rights Reserved. 66

Concepts: Linguistic Support for Generic Programming in C++

Douglas Gregor
Indiana University
dgregor@osl.iu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Jeremy Siek
Rice University

Jeremy.G.Siek@rice.edu

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu

Gabriel Dos Reis
Texas A&M University

gdr@cs.tamu.edu

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL

© 2018 Adobe. All Rights Reserved. 66

Concepts: Linguistic Support for Generic Programming in C++

Douglas Gregor
Indiana University
dgregor@osl.iu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Jeremy Siek
Rice University

Jeremy.G.Siek@rice.edu

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu

Gabriel Dos Reis
Texas A&M University

gdr@cs.tamu.edu

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c� 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL

© 2018 Adobe. All Rights Reserved.

2011

67

© 2018 Adobe. All Rights Reserved.

[This Slide Intentionally Left Blank]

68

© 2018 Adobe. All Rights Reserved.

2012

69

© 2018 Adobe. All Rights Reserved. 70

A Concept Design for the STL

B. Stroustrup and A. Sutton (Editors)

Jan, 2012

Document number: N3351=12-0041
Date: 2012-01-13

Working group: Evolution
Reply to: Bjarne Stroustrup <bs@cs.tamu.edu>

Andrew Sutton <asutton@cs.tamu.edu>

Participants:
Ryan Ernst, A9.com, Inc.

Anil Gangolli, A9.com, Inc.
Jon Kalb, A9.com, Inc.

Andrew Lumsdaine, Indiana University (Aug. 1-4)
Paul McJones, independent

Sean Parent, Adobe Systems Incorporated (Aug. 1-3)
Dan Rose, A9.com, Inc.

Alex Stepanov, A9.com, Inc.
Bjarne Stroustrup, Texas A&M University (Aug. 1-3)

Andrew Sutton, Texas A&M University
Larisse Voufo †, Indiana University

Jeremiah Willcock, Indiana University
Marcin Zalewski †, Indiana University

Abstract

This report presents a concept design for the algorithms part of the STL and outlines the
design of the supporting language mechanism. Both are radical simplifications of what was
proposed in the C++0x draft. In particular, this design consists of only 41 concepts (includ-
ing supporting concepts), does not require concept maps, and (perhaps most importantly)
does not resemble template metaprogramming.

Contents
1 Introduction 5

1.1 Motivation . 5
1.2 Approach . 7
1.3 Design Ideals . 8
1.4 Organization . 9

2 Algorithms 10
2.1 Non-modifying Sequence Operations . 12

2.1.1 All, Any, and None . 12
2.1.2 For Each . 14
2.1.3 The Find Family . 15
2.1.4 The Count Family . 18
2.1.5 Mismatch and Equal . 18
2.1.6 Permutations . 19

†Participated in editing of this report.

1

© 2018 Adobe. All Rights Reserved. 70

A Concept Design for the STL

B. Stroustrup and A. Sutton (Editors)

Jan, 2012

Document number: N3351=12-0041
Date: 2012-01-13

Working group: Evolution
Reply to: Bjarne Stroustrup <bs@cs.tamu.edu>

Andrew Sutton <asutton@cs.tamu.edu>

Participants:
Ryan Ernst, A9.com, Inc.

Anil Gangolli, A9.com, Inc.
Jon Kalb, A9.com, Inc.

Andrew Lumsdaine, Indiana University (Aug. 1-4)
Paul McJones, independent

Sean Parent, Adobe Systems Incorporated (Aug. 1-3)
Dan Rose, A9.com, Inc.

Alex Stepanov, A9.com, Inc.
Bjarne Stroustrup, Texas A&M University (Aug. 1-3)

Andrew Sutton, Texas A&M University
Larisse Voufo †, Indiana University

Jeremiah Willcock, Indiana University
Marcin Zalewski †, Indiana University

Abstract

This report presents a concept design for the algorithms part of the STL and outlines the
design of the supporting language mechanism. Both are radical simplifications of what was
proposed in the C++0x draft. In particular, this design consists of only 41 concepts (includ-
ing supporting concepts), does not require concept maps, and (perhaps most importantly)
does not resemble template metaprogramming.

Contents
1 Introduction 5

1.1 Motivation . 5
1.2 Approach . 7
1.3 Design Ideals . 8
1.4 Organization . 9

2 Algorithms 10
2.1 Non-modifying Sequence Operations . 12

2.1.1 All, Any, and None . 12
2.1.2 For Each . 14
2.1.3 The Find Family . 15
2.1.4 The Count Family . 18
2.1.5 Mismatch and Equal . 18
2.1.6 Permutations . 19

†Participated in editing of this report.

1

© 2018 Adobe. All Rights Reserved.

2015

71

© 2018 Adobe. All Rights Reserved. 72

© 2018 Adobe. All Rights Reserved. 72

© 2018 Adobe. All Rights Reserved.

2016

73

© 2018 Adobe. All Rights Reserved. 74

© 2018 Adobe. All Rights Reserved.

2020

75

© 2018 Adobe. All Rights Reserved. 76

© ISO/IEC N4713

17 Templates [temp]

1 A template defines a family of classes, functions, or variables, an alias for a family of types, or a concept.
template-declaration:

template-head declaration
template-head concept-definition

template-head:
template < template-parameter-list > requires-clauseopt

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

requires-clause:
requires constraint-logical-or-expression

constraint-logical-or-expression:
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression:
primary-expression
constraint-logical-and-expression && primary-expression

concept-definition:
concept concept-name = constraint-expression ;

concept-name:
identifier

[Note: The > token following the template-parameter-list of a template-declaration may be the product of
replacing a >> token by two consecutive > tokens (17.2). — end note]

2 The declaration in a template-declaration (if any) shall
—(2.1) declare or define a function, a class, or a variable, or
—(2.2) define a member function, a member class, a member enumeration, or a static data member of a class

template or of a class nested within a class template, or
—(2.3) define a member template of a class or class template, or
—(2.4) be a deduction-guide, or
—(2.5) be an alias-declaration.

3 A template-declaration is a declaration. A template-declaration is also a definition if its template-head is
followed by either a concept-definition or a declaration that defines a function, a class, a variable, or a static
data member. A declaration introduced by a template declaration of a variable is a variable template. A
variable template at class scope is a static data member template.
[Example:

template<class T>
constexpr T pi = T(3.1415926535897932385L);

template<class T>
T circular_area(T r) {

return pi<T> * r * r;
}

struct matrix_constants {
template<class T>

using pauli = hermitian_matrix<T, 2>;
template<class T>

constexpr pauli<T> sigma1 = { { 0, 1 }, { 1, 0 } };
template<class T>

constexpr pauli<T> sigma2 = { { 0, -1i }, { 1i, 0 } };

Templates 306

© 2018 Adobe. All Rights Reserved. 76

© ISO/IEC N4713

17 Templates [temp]

1 A template defines a family of classes, functions, or variables, an alias for a family of types, or a concept.
template-declaration:

template-head declaration
template-head concept-definition

template-head:
template < template-parameter-list > requires-clauseopt

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

requires-clause:
requires constraint-logical-or-expression

constraint-logical-or-expression:
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression:
primary-expression
constraint-logical-and-expression && primary-expression

concept-definition:
concept concept-name = constraint-expression ;

concept-name:
identifier

[Note: The > token following the template-parameter-list of a template-declaration may be the product of
replacing a >> token by two consecutive > tokens (17.2). — end note]

2 The declaration in a template-declaration (if any) shall
—(2.1) declare or define a function, a class, or a variable, or
—(2.2) define a member function, a member class, a member enumeration, or a static data member of a class

template or of a class nested within a class template, or
—(2.3) define a member template of a class or class template, or
—(2.4) be a deduction-guide, or
—(2.5) be an alias-declaration.

3 A template-declaration is a declaration. A template-declaration is also a definition if its template-head is
followed by either a concept-definition or a declaration that defines a function, a class, a variable, or a static
data member. A declaration introduced by a template declaration of a variable is a variable template. A
variable template at class scope is a static data member template.
[Example:

template<class T>
constexpr T pi = T(3.1415926535897932385L);

template<class T>
T circular_area(T r) {

return pi<T> * r * r;
}

struct matrix_constants {
template<class T>

using pauli = hermitian_matrix<T, 2>;
template<class T>

constexpr pauli<T> sigma1 = { { 0, 1 }, { 1, 0 } };
template<class T>

constexpr pauli<T> sigma2 = { { 0, -1i }, { 1i, 0 } };

Templates 306

© 2018 Adobe. All Rights Reserved. 77

© 2018 Adobe. All Rights Reserved.

“Generic programming is about
abstracting and classifying algorithms

and data structures.

78

© 2018 Adobe. All Rights Reserved.

It gets its inspiration from Knuth
and not from type theory.

79

© 2018 Adobe. All Rights Reserved.

Its goal is the incremental construction of
systematic catalogs of useful, efficient and
abstract algorithms and data structures.

80

© 2018 Adobe. All Rights Reserved.

Such an undertaking is still a dream.”

– Alex Stepanov

81

© 2018 Adobe. All Rights Reserved.

References

Much of the material in this talk can be found at

http://stepanovpapers.com/

A special thanks to Paul McJones for organizing this site

Sincere apologies to anyone I left out, your contribution was important.

83

http://stepanovpapers.com/

