
Sponsored by:

Gold

Bronze

Community



Generic Programming
Sean Parent | Principal Scientist



© 2018 Adobe.  All Rights Reserved.

“You cannot fully grasp mathematics until you understand 
its historical context.” – Alex Stepanov
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#1 Song: Faith, George Michael
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Winter Olympic Games in Calgary, Alberta, Canada


US Senate ratifies INF treaty between US and Soviet Union
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George H. W. Bush wins US Presidential Election
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“By generic programming we mean the definition of 
algorithms and data structures at an abstract or 

generic level, thereby accomplishing many related 
programming tasks simultaneously. The central notion 
is that of generic algorithms, which are parameterized 
procedural schemata that are completely independent 
of the underlying data representation and are derived 

from concrete, efficient algorithms.”
8
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1976 Parallel Computation and Associative Property
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A binary operation  ∙  on a set S is called associative if it satisfies the associative law:

(x ∙ y) ∙ z = x ∙ (y ∙ z) for all x, y, z in S .
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1976 Parallel Computation and Associative Property

Parallel reduction is associated with monoids
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Software is associated with Algebraic Structures
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1981 Tecton

The Tecton language
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1986-87 Libraries

Higher Order Programming
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Knowledge is founded on the basis of precise, quantitative laws
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Knowledge is founded on the basis of precise, quantitative laws
Mathematics is discovery, not invention
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Software is defined on Algebraic Structures
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- All grid coordinates are integers.

- All grid lines are infinitely thin.


These concepts are important! …they mean that all elements 
represented on the coordinate plane are mathematically pure. 
Mathematical calculations using integer arithmetic will produce 
intuitively correct results. If you keep in mind that the grid lines 
are infinitely thin, you’ll never have “endpoint paranoia” — the 
confusion that results from not knowing whether that last dot is 
included in the line.
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Gather

35

p

l

f template <typename I, // I models BidirectionalIterator

          typename S> // S models UnaryPredicate

auto gather(I f, I l, I p, S s) -> pair<I, I>

{

    return { stable_partition(f, p, not1(s)),

             stable_partition(p, l, s) };

}
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For a sequence of n elements there are n + 1 positions
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1993

Alex resumes work on Generic Programming


Andrew Koenig suggests writing a standard library proposal
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By Jon Bentley 

programming 
pearts 

WRITING CORRECT PROGRAMS 
In the late 1960s people were talking about the promise of 
programs that verify the correctness of other programs. Unfor- 
tunately, it is now the middle of the 1980s, and, with precious 
few exceptions, there is still little more than talk about auto- 
mated verification systems. Despite unrealized expectations, 
however, the research on program verification has given us 
something far more valuable than a black box that gobbles 
programs and flashes "good" or "bad"--we now have a funda- 
mental understanding of computer programming. 

The purpose of this column is to show how that fundamen- 
tal understanding can help programmers write correct pro- 
grams. But before we get to the subject itself, we must keep it 
in perspective. Coding skill is just one small part of writing 
correct programs. The majority of the task is the subject of the 
three previous columns: problem definition, algorithm design, 
and data structure selection. If you perform those tasks well, 
then writing correct code is usually easy. 

The Challenge of Binary Search 
Even with the best of designs, every now and then a program- 
mer has to write subtle code. This column is about one prob- 
lem that requires particularly careful code: binary search. 
After defining the problem and sketching an algorithm to 
solve it, we'll use principles of program verification in several 
stages as we develop the program. 

The problem is to determine whether the sorted array 
X[1. .  N] contains the element T. Precisely, we know that N 
> 0 and that X[1] < X[2] < . . -  < X[N]. The types of T and 
the elements of X are the same; the pseudocode should work 
equally well for integers, reals or strings. The answer is stored 
in the integer P (for position); when P is zero T is not in 
X[1 ..  N], otherwise 1 < P _< N and T = X[P]. 

Binary search solves the problem by keeping track of a 
range within the array in which T must be if it is anywhere 
in the array. Initially, the range is the entire array. The range 
is diminished by comparing its middle element to T and 
discarding half the range. This process continues until T is 
discovered in the array or until the range in which it must lie 
is known to be empty. The process makes roughly logs N 
comparisons. 

Most programmers think that with the above description in 
hand, writing the code is easy; they're wrong. The only way 
you'll believe this is by putting down this column right now, 
and writing the code yourself. Try it. 
Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 
© 1983 ACM 0001-0782/83/1200-1040 75¢ 

I've given this problem as an in-class assignment in courses 
at Bell Labs and IBM. The professional programmers had one 
hour (sometimes more) to convert the above description into a 
program in the language of their choice; a high-level pseudo- 
code was fine. At the end of the specified time, almost all the 
programmers reported that they had correct code for the task. 
We would then take 30 minutes to examine their code, 
which the programmers did with test cases. In many different 
classes and with over a hundred programmers, the results 
varied little: 90 percent of the programmers found bugs in 
their code (and I wasn't always convinced of the correctness 
of the code in which no bugs were found). 

I found this amazing: only about 10 percent of professional 
programmers were able to get this small program right. But 
they aren't the only ones to find this task difficult. In the 
history in Section 6.2.1 of his Sorting and Searching, Knuth 
points out that while the first binary search was published in 
1946, the first published binary search without bugs did not 
appear until 1962. 

Writing The Program 
The key idea of binary search is that we always know that if 
T is anywhere in X[1. .  N], then it must be in a certain range 
of X. We'll use the shorthand MustBe(range) to mean that if T 
is anywhere in the array, then it must be in range. With this 
notation, it's easy to convert the above description of binary 
search into a program sketch. 

initialize range to designate X[ I..N] 
loop 

{ invariant: MustBe(range) 1 
if range is empty, 

return that T is nowhere in the 
array 

compute M, the middle of the range 
use M as a probe to shrink the range 

if T is found during the 
shrinking process, return its 
position 

endloop 

The crucial part of this program is the loop invariant, which 
is enclosed in {}'s. This is an assertion about the program state 
that is invariantly true at the beginning and end of each 
iteration of the loop (hence its name); it formalizes the intui- 
tive notion we had above. 

We'll now refine the program, making sure that all our 
actions respect the invariant. The first issue we must face is 
the representation of range: we'll use two indices L and U (for 
"lower" and "upper") to represent the range L . .  U. (There are 
other possible representations for a range, such as its begin- 

1040 Communications of the ACM December 1983 Volume 26 Number 12 
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“I’ve assigned this problem [binary search] in courses at Bell 
Labs and IBM. Professional programmers had a couple of 

hours to convert the description into a programming 
language of their choice; a high-level pseudo code was 

fine… Ninety percent of the programmers found bugs in 
their programs (and I wasn’t always convinced of the 

correctness of the code in which no bugs were found).”

– Jon Bentley, Programming Pearls
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“I want to hire the other ten percent.”

– Mark Hamburg , Photoshop Lead
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Jon Bentley’s Solution (translated to C++)

int binary_search(int x[], int n, int v) {
    int l = 0;
    int u = n - 1;

    while (true) {
        if (l > u) return -1;


        int m = (l + u) / 2;


        if (x[m] < v) l = m + 1;
        else if (x[m] == v) return m;
        else /* (x[m] > v) */ u = m - 1;
    }
}

46
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STL implementation

template <class I, // I models ForwardIterator
          class T> // T is value_type(I)
I lower_bound(I f, I l, const T& v) {
    while (f != l) {
        auto m = next(f, distance(f, l) / 2);


        if (*m < v) f = next(m);
        else l = m;
    }
    return f;
}

47
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B C Reference number
ISO/IEC 14882:1998(E)

INTERNATIONAL
STANDARD

ISO/IEC
14882

First edition
1998-09-01

Programming languages — C++
Langages de programmation — C++

Processed and adopted by ASC X3 and approved by ANSI
as an American National Standard.

Date of ANSI Approval:  7/27/98

Published by American National Standards Institute,
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Abstract. This paper represents the knowledge accumulated in response
to a real-world need: that the C++ Standard Template Library exhibit
useful and well-defined interactions with exceptions, the error-handling
mechanism built-in to the core C++ language. It explores the meaning of
exception-safety, reveals surprising myths about exceptions and generic-
ity, describes valuable tools for reasoning about program correctness, and
outlines an automated testing procedure for verifying exception-safety.
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1 What Is Exception-Safety?

Informally, exception-safety in a component means that it exhibits reasonable
behavior when an exception is thrown during its execution. For most people,
the term “reasonable” includes all the usual expectations for error-handling:
that resources should not be leaked, and that the program should remain in a
well-defined state so that execution can continue. For most components, it also
includes the expectation that when an error is encountered, it is reported to the
caller.

More formally, we can describe a component as minimally exception-safe
if, when exceptions are thrown from within that component, its invariants are
intact. Later on we’ll see that at least three different levels of exception-safety
can be usefully distinguished. These distinctions can help us to describe and
reason about the behavior of large systems.

In a generic component, we usually have an additional expectation of excep-
tion-neutrality, which means that exceptions thrown by a component’s type pa-
rameters should be propagated, unchanged, to the component’s caller.

2 Myths and Superstitions

Exception-safety seems straightforward so far: it doesn’t constitute anything
more than we’d expect from code using more traditional error-handling tech-
niques. It might be worthwhile, however, to examine the term from a psycholog-
ical viewpoint. Nobody ever spoke of “error-safety” before C++ had exceptions.

M. Jazayeri, R. Loos, D. Musser (Eds.): Generic Programming ’98, LNCS 1766, pp. 69–79, 2000.
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Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces.  Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers.  We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.
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“We call the set of axioms satisfied by a data 
type and a set of operations on it a concept.” 
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“Since we wish to extend semantics as well as syntax from built-
in types to user types, we introduce the idea of a regular type, 

which matches the built-in type semantics, thereby making our 
user-defined types behave like built-in types as well.”

54



© 2018 Adobe.  All Rights Reserved.

“Since we wish to extend semantics as well as syntax from built-
in types to user types, we introduce the idea of a regular type, 

which matches the built-in type semantics, thereby making our 
user-defined types behave like built-in types as well.”

55



© 2018 Adobe.  All Rights Reserved.

2002

56



© 2018 Adobe.  All Rights Reserved. 57



© 2018 Adobe.  All Rights Reserved. 57



© 2018 Adobe.  All Rights Reserved. 57



© 2018 Adobe.  All Rights Reserved. 57



© 2018 Adobe.  All Rights Reserved. 58
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Disclaimer: Please do not redistribute. Instead, requests for a current draft should go
to Mat Marcus. These notes are a work in progress and do not constitute a book. In
particular, most of the current effort is directed towards writing up new material. As a
consequence little time remains for structuring, refinement, or clean up, so please be pa-
tient. Nevertheless, suggestions, comments and corrections are welcomed. Please reply to
mmarcus@adobe.com and stepanov@adobe.com.
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template <typename I, typename P>
    requires(Mutable(I) && ForwardIterator(I) &&
        UnaryPredicate(P) && ValueType(I) == Domain(P))
I partition_semistable(I f, I l, P p) {
    // Precondition: mutable_bounded_range(f, l)
    I i = find_if(f, l, p);
    if (i == l) return i;
    I j = successor(i);
    while (true) {
        j = find_if_not(j, l, p);
        if (j == l) return i;
        swap_step(i, j);
    }
}
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Abstract

Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction

The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-
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bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL
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The C++ language [25, 62] supports parametrized types and func-
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bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL
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© ISO/IEC N4713

17 Templates [temp]

1 A template defines a family of classes, functions, or variables, an alias for a family of types, or a concept.
template-declaration:

template-head declaration
template-head concept-definition

template-head:
template < template-parameter-list > requires-clauseopt

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

requires-clause:
requires constraint-logical-or-expression

constraint-logical-or-expression:
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression:
primary-expression
constraint-logical-and-expression && primary-expression

concept-definition:
concept concept-name = constraint-expression ;

concept-name:
identifier

[ Note: The > token following the template-parameter-list of a template-declaration may be the product of
replacing a >> token by two consecutive > tokens (17.2). — end note ]

2 The declaration in a template-declaration (if any) shall
—(2.1) declare or define a function, a class, or a variable, or
—(2.2) define a member function, a member class, a member enumeration, or a static data member of a class

template or of a class nested within a class template, or
—(2.3) define a member template of a class or class template, or
—(2.4) be a deduction-guide, or
—(2.5) be an alias-declaration.

3 A template-declaration is a declaration. A template-declaration is also a definition if its template-head is
followed by either a concept-definition or a declaration that defines a function, a class, a variable, or a static
data member. A declaration introduced by a template declaration of a variable is a variable template. A
variable template at class scope is a static data member template.
[ Example:

template<class T>
constexpr T pi = T(3.1415926535897932385L);

template<class T>
T circular_area(T r) {

return pi<T> * r * r;
}

struct matrix_constants {
template<class T>

using pauli = hermitian_matrix<T, 2>;
template<class T>

constexpr pauli<T> sigma1 = { { 0, 1 }, { 1, 0 } };
template<class T>

constexpr pauli<T> sigma2 = { { 0, -1i }, { 1i, 0 } };

Templates 306



© 2018 Adobe.  All Rights Reserved. 76

© ISO/IEC N4713

17 Templates [temp]

1 A template defines a family of classes, functions, or variables, an alias for a family of types, or a concept.
template-declaration:

template-head declaration
template-head concept-definition

template-head:
template < template-parameter-list > requires-clauseopt

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

requires-clause:
requires constraint-logical-or-expression

constraint-logical-or-expression:
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression:
primary-expression
constraint-logical-and-expression && primary-expression

concept-definition:
concept concept-name = constraint-expression ;

concept-name:
identifier

[ Note: The > token following the template-parameter-list of a template-declaration may be the product of
replacing a >> token by two consecutive > tokens (17.2). — end note ]

2 The declaration in a template-declaration (if any) shall
—(2.1) declare or define a function, a class, or a variable, or
—(2.2) define a member function, a member class, a member enumeration, or a static data member of a class

template or of a class nested within a class template, or
—(2.3) define a member template of a class or class template, or
—(2.4) be a deduction-guide, or
—(2.5) be an alias-declaration.

3 A template-declaration is a declaration. A template-declaration is also a definition if its template-head is
followed by either a concept-definition or a declaration that defines a function, a class, a variable, or a static
data member. A declaration introduced by a template declaration of a variable is a variable template. A
variable template at class scope is a static data member template.
[ Example:

template<class T>
constexpr T pi = T(3.1415926535897932385L);

template<class T>
T circular_area(T r) {

return pi<T> * r * r;
}

struct matrix_constants {
template<class T>

using pauli = hermitian_matrix<T, 2>;
template<class T>

constexpr pauli<T> sigma1 = { { 0, 1 }, { 1, 0 } };
template<class T>

constexpr pauli<T> sigma2 = { { 0, -1i }, { 1i, 0 } };

Templates 306



© 2018 Adobe.  All Rights Reserved. 77



© 2018 Adobe.  All Rights Reserved.

“Generic programming is about 
abstracting and classifying algorithms 

and data structures.
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It gets its inspiration from Knuth 
and not from type theory.
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Its goal is the incremental construction of 
systematic catalogs of useful, efficient and 
abstract algorithms and data structures.
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Such an undertaking is still a dream.”

– Alex Stepanov
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