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Abstract

A user interface, such as a dialog, assists a user in synthesising a
set of values, typically parameters for a command object. Code for
“command parameter synthesis” is usually application-specific and
non-reusable, consisting of validation logic in event handlers and
code that controls how values of user interface elements change in
response to a user’s actions, etc. These software artifacts are inci-
dental—they are not explicitly designed and their implementation
emerges from a composition of locally defined behaviors.

This article presents property models to capture explicitly the
algorithms, validation, and interaction rules, arising from command
parameter synthesis. A user interface’s behavior can be derived
from a declarative property model specification, with the assistance
of a component akin to a constraint solver. This allows multiple
interfaces, both human and programmatic, to reuse a single model
along with associated validation logic and widget activation logic.

The proposed technology is deployed in large commercial soft-
ware application suites. Where we have applied property models,
we have measured significant reductions in source-code size with
equivalent or increased functionality; additional levels of reuse are
apparent, both within single applications, and across product lines;
and applications are able to provide more uniform access to func-
tionality. There is potential for wide adoption: by our measure-
ments command parameter synthesis comprises roughly one third
of the code and notably more of the defects in desktop applications.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Reuse models; D.2.2 [Design Tools and Techniques]: User inter-
faces

General Terms  Algorithms, Design

Keywords Software reuse, Component software, User interfaces,
Declarative specifications, Constraint systems
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1. Introduction

Software systems utilizing reusable components tend to be more
robust and less costly than their hand-crafted counterparts (Basili
et al. 1996; Frakes and Succi 2001; Nazareth and Rothenberger
2004). Indeed, the software industry has been successful in cap-
turing often needed functionality into reusable generic compo-
nents, witnessed by the wide availability of software libraries in
all mainstream programming languages and the ubiquitous use
of components from those libraries. There are, however, domains
commonly encountered in mainstream day-to-day programming in
which reuse remains modest—and in which the industry continues
to struggle with low quality, high defect rates, and low productivity.

As the scale of software increases, software development re-
lies more on reusable components—at the same time, there is an
increase in the amount of code that composes and relates compo-
nents. Often such code is not explicitly designed, and it is rarely
reusable. In larger collections of components, networks of relation-
ships between components arise. We refer to such networks as inci-
dental data structures—data structures that emerge out of compo-
sitions of components and have neither an explicit encoding in the
program nor an explicit run-time representation accessible to the
rest of the program. Consequently, such data structures cannot be
operated on by generic, reusable algorithms. Instead, they are ma-
nipulated with incidental algorithms, similarly emerging from the
combined behavior of locally defined actions, and with no explicit
encoding in the program. We believe that a large reuse potential
exists within incidental algorithms and data structures.

In this paper we describe some of the architectural challenges
in creating reusable libraries for rich user interfaces. We identify
the communication and relationships between different elements
of user interfaces as an architectural domain where incidental data
structures and algorithms are prevalent; we refer to this domain as
command parameter synthesis. We demonstrate a dramatic increase
in re-usability of user interface code if the incidental structures of
command parameter synthesis are modeled explicitly. To represent
these explicit models, we present a new implementation mecha-
nism, property models.

Command parameter synthesis assists a client in selecting and
validating parameters for some command to be executed in the pro-
gram. This is a common task in interactive applications—or in any
application with a non-trivial, human or programmatic, interface.
Typical examples of user interfaces requiring command parame-



ter synthesis are a print dialog for selecting parameters that guide
how a document should be printed, and an image scaling script
for selecting parameters that determine how an image size should
change. In today’s industrial programming practices, code for com-
mand parameter synthesis is distributed throughout script process-
ing code and event handlers for user interface elements. In simple
cases, this code consists of “validators” for individual elements,
but often the desired behavior is more complex: changing a value
of one element can trigger changes in other elements. Seemingly
simple examples often contain complex and cyclic dependencies
between elements, manifesting in large amounts of non-reusable
event handling code tightly dependent on the vendor’s application
framework.

As its main contribution, this paper describes explicit property
models, algorithms, and the supporting component architecture that
can replace the incidental algorithms and data structures arising in
command parameter synthesis code. Preliminary results from de-
ploying the technology in an industrial setting exhibit significant
reductions in defects and code size for command parameter syn-
thesis. We also discuss how the proposed approach provides more
consistent functionality in and across applications, opens the door
for new functionality, aids automated reasoning, and decreases the
gap between user interface design and implementation.

The approach described in this paper is used in the Adobe Soft-
ware Technology Labs (STLab) open-sourced property model li-
brary (Parent 2005). The Parasol Lab at Texas A&M University
and Adobe’s STLab collaborate on a number of projects, including
property model research and prototype development. At times the
discussion in this paper diverges from the documentation of the cur-
rently deployed property model library, reflecting instead the state
of our research prototype system, available for download (Parasol
2008). We point out key differences when relevant.

Finally, as motivation for focusing on command parameter syn-
thesis, we note that a significant portion of the code of desktop
applications deals with user interfaces. A survey from 1992 (My-
ers and Rosson 1992) reported this portion as almost 50%. A recent
analysis of a large industrial code base indicated that approximately
one third of the code, and more than half of the reported defects,
were in code that coordinates event handling logic, widgets, and
other Graphical User Interface (GUI) components (Parent 2006)—
essentially in code for command parameter synthesis. Industrial
programming practices seem to be accepting this state of affairs.
A quote from the developer documentation of a widely used GUI
framework is revealing, given that it is not even expected that the
code of command parameter synthesis (here lumped as part of the
“controller” of the Model-View-Controller architecture (Burbeck
1987)) could be generic or reusable: “Since what a controller does
is very specific to an application, it is generally not reusable even
though it often comprises much of an application’s code.” (App
2007, §1)

1.1 Command parameter synthesis

Figure 1 situates the command parameter synthesis code in an ap-
plication that follows the Command pattern (Gamma et al. 1995,
§5). Changes to a document are effected through command objects
that encapsulate a command with its associated parameters; com-
mand parameter synthesis code constructs these parameters, and
can record which variables contributed to computing the values of
the parameters. In a typical situation, such code is woven through-
out user interface and script components that assist the user in pro-
ducing the parameters. Command parameter synthesis also depends
on the current state of the document, possible default values, and
stored preferences. Conversely, the values of variables produced
during command parameter synthesis can be used as future pref-
erences or initial values. They can also be recorded as a script for
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Figure 1. Relation of command parameter synthesis to Command
Pattern.

repeating the command in the future (for a different document) and
thus, instead of or in addition to a human user, command parame-
ter synthesis code may receive input from an explicitly written or
recorded script.

To be more concrete, we consider a dialog box for displaying
and controlling variables contributing to parameter synthesis. For
example, in an image editing application, an image-resize com-
mand might be written to expect horizontal and vertical dimensions
of the new image in pixels. A dialog box can be more flexible, of-
fering the user the choice of whether to set the width and height
in pixels or in percents, relative to their initial values. It might fur-
ther assist the user by providing a constrain-proportions flag which,
when set, arranges matters so that if the user doubles the width of
the image the height will automatically double as well. As another
example, an invalid value in any of the fields might cause an “OK”
button to be deactivated. Ultimately, of all the values involved, the
underlying command must be constructed with absolute height and
width parameters. We might go so far as to claim that the role of
a user interface in an application is to assist the user in producing
valid parameters for a command object.

The above kind of rules form the essence of the behavior of
a dialog window, yet in an application utilizing a typical modern
object-oriented GUI framework, such rules have no explicit repre-
sentation; they are dispersed throughout event handling functions.
Such event handling code is an example of an incidental algorithm.
Furthermore, the state upon which the incidental algorithm operates
is often distributed, and replicated, across individual components,
giving rise to an incidental data structure.

To improve this situation we explicitly model the space of vari-
ables in command parameter synthesis. Programmers are accus-
tomed to working with explicit models of documents using the
Model-View-Controller (MVC) pattern. We choose to also apply
the essence of MVC to the command parameter synthesis process.
The values of the variables on which a command’s parameters
might depend, for example the width and height variables in the
above example, together with their interdependencies and invari-
ants, comprise the (property) model. The widgets in a dialog can
play the role of both controller (upon user interaction) and view
(through the widget’s visual characteristics). Unfortunately, many
widget libraries lack a clean separation of view and controller and,
worse yet for our purposes, they tend to operate on state in the wid-
gets themselves. These issues present some barriers to the explicit
modelling approach, and we typically find that a widget set must
be (lightly) wrapped (see Section 4.1) to cleanly support MVC for
command parameter synthesis.

A single application may contain numerous commands. Fur-
thermore, each command parameter synthesis for a given command
may occur via several different avenues: dialog boxes, palettes,
scripting interfaces, and so forth. Realizing the property model as
an explicit software component thus provides reuse opportunities
in multiple dimensions: within a single application over multiple
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Figure 2. A dialog for resizing a graphical object.

interfaces, across multiple commands, and across multiple applica-
tions. In particular, we explore architectures that capture common-
ality using a property modelling component, together with auxiliary
subsystems such as small declarative languages for concisely ex-
pressing the unique characteristics of a particular property model.

1.2 Image size — a closer look

Figure 2 shows an example dialog for resizing a graphical object.
Four widgets maintain data that can be edited: absolute width,
absolute height, relative width, and relative height. The absolute
values are in some integral units, such as pixels, and the unit of
relative width and height is percent. The intent is to allow the user
to either set the object’s size to some absolute width and height or
to scale it in proportion to the initial width and height that were in
effect when the dialog was launched. The initial width and height
are also shown in the dialog but cannot be altered. Furthermore, the
dialog has a check box that sets or clears a flag that ensures that
the height and width retain the same aspect ratio as that between
the initial height and width. The user of the dialog thus has several
ways to produce the inputs needed by the image-resize command
object, which are the width and height of the image in pixels.

Figure 3 demonstrates the complexity of the incidental data
structure arising from this dialog. The dependencies in the figure
were derived from the event handling code in the implementation of
the dialog within an object-oriented GUI framework. Our goal is to
express these complex relations with a property model, and realize
the model as an explicit data structure that exists independently of
the dialog box, but to which the above dialog box, or any other user
interface, scripting system, or other tool can attach non-intrusively.

We support property models via a software library that provides
a sheet data structure that stores the values of variables, connec-
tions between variables, and references to functions that perform
computations between variables, as well as algorithms that main-
tain invariants, or stated relations between variables, when the val-
ues of some of the variables are perturbed.

Rather than using a library API directly, one of the ways a pro-
grammer can describe a property model is using a domain specific
declarative language. The specification language for Adobe’s prop-
erty model library is known as Adam (Parent 2005). For example,
the specifics of the property model for synthesizing parameters to
the image-resize command are captured in the specification shown
in Figure 4. Briefly, the input, interface, and output sections de-
clare the variables, or properties, of the property model, and the
relate sections define the dependencies and computational rules be-
tween variables. We return to the details of this specification in Sec-
tion 2.2.

Regarding code reuse, we note that, for example, all of the val-
idation logic in the event handlers, dialog initialization and clos-
ing code, code for disabling and enabling user interface elements,
and script recording and play back, can be derived from a property
model specification, saving the programmer from writing signifi-
cant amounts of non-reusable application and dialog specific code.
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Figure 3. The incidental data structure formed as the dependen-
cies between the Ul components and event handlers in an object-
oriented implementation of the user interface logic of dialog shown
in Figure 2. The edges correspond to the relations “event handler
writes to a value” or “event handler reads a value.”

sheet image_resize

{
input:
initial_width : 5 % 300;
initial_height : 7 = 300;
interface:

preserve,ratio : true;

absolute_width : initial_width;

absolute_height : initial_height;

relative_width;

relative_height;

logic:

relate {
absolute_width <== relative_width x* initial_width / 100;
relative_width <== absolute_width * 100 / initial_width;

relate {
absolute_height <== relative_height = initial_height / 100;
relative_height <== absolute_height x 100 / initial_height;

when (preserve_ratio) relate {
relative_width <== relative_height;
relative_height <== relative_width;
}
output:
result <== { height: absolute_height, width: absolute_width };
}

Figure 4. A declarative specification of the model for parameter
synthesis for an image-resize command. The syntax is that of the
Adam language of Adobe’s property model library.

2. Explicit property models for command
parameter synthesis

The dialog in Figure 2 supports the user in synthesizing parameters
for the image-resize command object by implementing a multitude
of mappings between values displayed in different user interface
elements, such as the one that computes the absolute width from
the relative and initial widths. The control logic of the dialog
orchestrates when and which of these mappings should be applied,
e.g., a given map might automatically change the width to match
the original image’s proportions when the height changes. In our
proposed architecture, these mappings are captured in a property
model.



A property model, like a spreadsheet, maintains relationships
and invariants across variables. But, unlike a spreadsheet, values
(cells) in a property model might be able to play the role of source
value or derived value according to which mappings (formulas)
are currently in effect. When requested to change the value of a
variable, the property model calculates which mappings are to be
in effect, based on which variable is requested to be changed and
which are the source and derived variables in the current state of the
model. All such logic is entirely contained in the property model—
the role of a view, e.g., a set of widgets in a dialog box, is limited to
responding to signals that the model has been updated by refreshing
the display appropriately. Similarly, a controller’s task is simply to
generate a request to the property model to modify the value of a
single variable.

We have found that constraint systems, in particular the formu-
lations of multi-way dataflow constraint systems (Zanden 1996),
are useful for representing property models for command param-
eter synthesis. These systems define relations between variables.
Each relation has a set of methods such that each can satisfy the
relation by assigning new values to some of its variables.

The manner in which values of variables should be propagated
in user interfaces cannot in general be captured only with (undi-
rected) relations. The direction to which mappings between vari-
ables are applied when interacting with a dialog is significant. For
example, whether to compute height from width and aspect ratio
or width from height and aspect ratio depends on which user inter-
face elements were altered most recently. In the proposed architec-
ture, this information is not provided by the programmer; rather, the
mechanism of variable priorities, explained in Section 2.3, deter-
mines the direction of value propagation in property models in ac-
cordance with the principle of “least surprise”, favoring the preser-
vation of values edited more recently over those edited less recently.

A carefully selected representation of property models as multi-
way dataflow constraint systems lets us incorporate variable pri-
orities into existing constraint system formulations and leverage
known constraint solving algorithms (such as QuickPlan (Zanden
1996)) to determine the direction of propagating values in the sys-
tem. This section gives a brief introduction to constraint systems
and describes how the core parts of the property model can be
viewed and implemented as a constraint system.

2.1 Background: multi-way dataflow constraint systems

A constraint system is a tuple (C, V'), where C' is a set of con-
straints, and V' a set of variables that each have a current value.
Each constraint in C'is a tuple (R, 7, M), where R C V, r is some
n-ary relation between variables in R (n = |R|), and M is a set
of constraint satisfaction methods (CSM). Executing any CSM in
M computes values to some subset of R using another subset of
R as inputs, such that the relation r becomes satisfied. If the vari-
ables in R satisfy r, we say that the constraint is satisfied. The sets
of inputs and outputs of a CSM in M are usually required to be
disjoint, and their union required to equal R. The code realizing a
CSM is considered a “black box”: it is the programmer’s responsi-
bility to ensure that a constraint is satisfied when any of its CSMs
is executed.

The constraint satisfaction problem for a constraint system
(C, V) is to find a valuation of the variables in V' such that each
constraint in C'is satisfied. Such a valuation is attained if the CSMs,
exactly one from each constraint, can be executed in an order where
once a variable has been read from or written to by one method,
no other method will write to it. Depending on the problem, such
an ordering may or may not exist; in this case, variations of the
constraint satisfaction problem use different criteria to relax some
constraints in order to attain valuations that satisfy a subset of the
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Figure 5. An undirected constraint graph (a) and a directed solu-
tion graph (b).

constraints (Zanden 1996; Freeman-Benson et al. 1990; Sannella
1994).

The relations in constraint systems can be arbitrary, but often
they are equalities. For example, the equation » = w/h, name it
e1, could describe what should hold true of the width w, height
h, and aspect ratio r of an image. One possible, perhaps the most
natural, set of constraint satisfaction methods for this equation is
M, = {w < rh,h «— w/r,r «— w/h}. Another relation, es,
might connect the width and height to the size of the file necessary
to represent the image, say, s = g(wh). We assume that the
function g realizes the size calculation, and that its details are not
known. For the relation e2, a possible (singleton) set of constraint
satisfaction methods is My = {s < g(wh)}; that is, the constraint
can only be satisfied in one direction, by computing s from w and
h.

A dataflow constraint system is often represented as a bipar-
tite graph G = (V + C, E), with vertex sets V and C represent-
ing the variables and constraints of the system, respectively, and
E the undirected edges that connect each constraint to its vari-
ables. Figure 5(a) depicts the graph arising from the above de-
scribed constraint system ({r,w, h, s}, {c1, c2}), where the con-
straint c1 = ({r,w,h},e1, M1) and c2 = ({s,w, h}, ez, Ma).
Variables are shown as circles and constraints as rectangles. This
graphical representation is useful for visualizing the dependencies
that the relations impose between variables, though it does not in-
dicate the inputs and outputs of the CSMs.

A solution graph (also, method graph) of a constraint graph
is a directed acyclic graph formed by selecting exactly one CSM
from each constraint, along with its in- and out-edges, so that each
variable vertex has at most one in-edge. One possible solution
graph for the constraint graph of Figure 5a is shown in Figure 5b. A
topological sort of the solution graph’s vertices determines a CSM
evaluation order that will assign values that satisfy all constraints
in the system.

Finding a solution graph for a given constraint graph is referred
to as the planning phase. Satistying the constraints by executing
the CSMs of the solution graph in a suitable order is known as the
execution phase.

Constraint systems can be overconstrained, so that there may
be no solutions, or underconstrained so that there is more than one
solution. The system above has three different solution graphs: any
of the three methods of ¢; paired with the sole method of ¢z forms
a solution.

2.2 Property model for command parameter synthesis as a
constraint graph

Each property in a property model is represented as a variable in
a constraint system. Constraint satisfaction methods define how
values of variables can be computed from those of other variables.
In our example dialog, shown in Figure 2, the various user interface
elements each display a value of a variable in a property model.
Manipulation of a user interface element translates into a request to



change the value of a variable in the model. The model, according
to its relations and CSMs, updates other variables as necessary.

The property model specification in Figure 4 gives rise to a
constraint system with the variables:

V= {hla Wi, ha7 Wa, hm Wy, Vrat, Ures};

w; and h; stand for initial width and height, w, and h,, for absolute
width and height, w, and h, for width and height relative to initial
width and height, and v, for the Boolean variable that controls pre-
serving the aspect ratio. The variable vys has no direct counterpart
as a user interface item; it is the result of the command parameter
synthesis in this property model, i.e. the command parameters, a
pair comprising the values of the absolute width and height.

The variable vy corresponds to the preserve_ratio variable in the
property model specification in Figure 4; correspondence between
the other variable names is self-explanatory. The specification cat-
egorizes variables into three groups with the input, interface, and
output sections. The semantics of the different section labels are
described later; the categorization makes no difference for solving
the constraint system, but is necessary for other components inter-
acting with the property model, in particular for script recording.

The constraints and their CSMs are derived from the relations
that must hold between the variables in the property model. These,
in turn, arise from the desired behavior of user interfaces support-
ing the modeled command parameter synthesis, such as our exam-
ple dialog box. In our example property model, the relations be-
tween the three height and three width variables each give rise to
one constraint. In these constraints, we name the CSMs with labels
(a,b,c,d,...)so that we may easily refer to them in later discus-
sion:

c1 = ({ha, hi, hr}, ha = hihr,

{a: hg < h;hy/100,b : hy — 100hq/h;i})
c2 = ({wa, wi, wr }, we = wiwy /100,

{¢: wq — wiwy,d : wr — 100wq /w;})

In the Adam specification in Figure 4, the first two relate clauses in
the logic section correspond to constraints ¢, and ca.

When the preserve aspect ratio flag is set, the ratio of the width
and height must equal the ratio of the initial width and height. This
relation can be captured as — v V hr, = w,. It is in principle
possible to satisfy this relation with the set of CSMs {w, «
if vrar then h,- else wy, hy < if v then w, else h,}. In essence,
the variable vy, however, controls whether the relation h, = w,
should be enforced or not. To model the condition, we consider
two different constraint graphs based on the value of v,—one
with no constraint between variables h, and w;., the other with the
constraint:

s = {at, ey wr }, hy = wr, {€ 2 wr — hy, f o hy — w,})

Splitting constraint graphs in this manner to express “conditional
constraints” is somewhat undesirable, as it exponentially increases
the number of systems one needs to reason about. However, in
property models, a valuation satisfying the constraint system is only
one of the desired results. The direction in which data flows in the
system is also important (see Section 2.3)—conditional constraints
affect the direction of the flow of data, whether they are active or
not. The counterpart of constraint c3 in Figure 4 demonstrates the
use of the special when ... relate construct for expressing condi-
tional constraints.

What remains is to define from which variables the result is
collected:

Cq = <{vre57wa7 ha}yvres = <wa,ha>, {g D Ures <wa7ha)})
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Figure 6. A constraint system for command parameter synthesis
for an image-resize command. The rectangles represent method
vertices. Dotted arrows are inputs to methods, solid arrows outputs
from methods.

This constraint is defined in the output section of Figure 4.

Figure 6 shows the constraint graph of the constraint system
S = (V,{c1,c2,c3,ca}) (the conditional constraint c3 is in-
cluded). Instead of the “one vertex per constraint” representation
of Figure 5a, here we represent each CSM with a distinct vertex
(drawn as a rectangle). Each such method vertex has in-edges from
vertices that represent the CSM’s input variables, and out-edges to
vertices that represent its output variables. Note that although the
methods in the examples presented in this paper have exactly one
output (and the currently deployed version of the Adam language
and its property model library impose this restriction), in general,
methods can have an arbitrary number of output variables. We mark
the method vertices belonging to a single constraint with a wavy
arc connecting them. The solution graph, if it exists, is obtained
by removing all but one method vertex and its edges from each
constraint.

The relations of the constraints are not shown in the graph, and
indeed, they do not have an explicit representation in our system.
The relations, however, provide the underlying mental model to
guide the programmer in developing the CSMs, and should be part
of the program documentation. One could envision that for some
constraints, instead of the user directly coding the CSMs, they
could be automatically generated from the constraint’s relation; we
have not studied this possibility further.

2.3 Variable priorities

A dialog must show up-to-date values of all properties, no matter
which value was last edited. In our example dialog, when the abso-
lute width is edited, the relative width should change accordingly,
and vice versa; height cells should work the same way. Which prop-
erties to update depends on which value was edited most recently
or, more generally, on the order of edits to a set of values.

Constraint systems as described above have many different so-
lution graphs that can satisfy the system. Each of these solution
graphs represents a different flow of data amongst the properties.
As mentioned, the solution graph selected should be the one that
is least surprising to the client, preserving the values of variables
that the client has changed more recently over those changed less
recently.

To order solution graphs, the property model maintains a mea-
sure indicating how recently a variable was edited. We refer to this
measure as the priority of a variable. We use natural numbers as pri-
ority values, where a lower numerical value indicates a higher pri-
ority, that is, a more recently edited variable. The task of the solver



is thus to find a solution graph such that data does not flow from
a lower priority variable to a higher priority variable, or, if such a
solution is not possible, a solution graph that minimizes such flow.

2.4 Property model as a library component

We are now in a position to give a more precise description of
a property model as a software component. We identify the fol-
lowing roles and associated categories of operations of a property
model component: (1) a property model is a container of variables
and constraints between those variables, and thus provides opera-
tions for populating the model with variables and constraints; (2) a
property model is a constraint system, and thus supports requests
to perturb the value or priority of a variable and provides opera-
tions for requesting the constraint system to be solved, followed by
a recalculation of the values of its variables; (3) a property model
serves as the model part of MVC, and thus provides the views with
operations that support monitoring the value of a variable; (4) the
variable priorities and current computed solution graph of the prop-
erty model contain information necessary for scripting, user inter-
face element enabling and disabling, automated reasoning, etc., and
thus depending on the needs, a property model component provides
operations for discovering the variables that contribute to the output
variables of a property model, or even direct access to the current
solution graph.

A concrete instance of a property model component is the
sheet_t data structure with its accompanying operations in the
Adobe STLab’s property model library (Parent 2005).

3. Solving property models

We model variable priorities by adding to the system new con-
straints that require certain variables’ values to remain unchanged.
In general, adding such stay constraints makes the system over-
constrained, so that all the constraints in the system cannot be
satisfied simultaneously. We deal with over-constrained systems
by giving constraints different strengths, and modifying the con-
straint satisfaction problem to admit partial solutions that satisfy
only some of the constraints, where stronger constraints are favored
over weaker ones. Such constraint hierarchies (Borning et al. 1987)
commonly have a dedicated strongest class of required constraints
that all solutions must satisfy, and a small number of other classes;
the constraint strength classes form a total order. Here we asso-
ciate strength zero with the class of required constraints. Classes of
weaker constraints are given strength 1, 2, 3, etc.

In property models, the strength of a variable’s stay constraint is
determined by the variable’s priority; solver algorithms that support
constraint hierarchies (Zanden 1996; Freeman-Benson et al. 1990;
Sannella 1994) will then favor partial solutions that retain the
values of the most recently edited variables.

More precisely, a stay constraint has exactly one method and
it involves one variable. The method is a constant function, whose
value is the current value of the variable. If a stay constraint is en-
forced in a particular solution, the constraint is satisfied through its
sole method, and the variable’s value thus “stays” intact. Figure 7
shows our example constraint graph with stay constraints added
(method vertices of stay constraints are shown as doubly framed
rectangles). The constraint graph shows one possible assignment
of strengths to the stay constraints.

Priorities, and thus stay constraints, are only assigned to vari-
ables that can be requested to be changed by a client of the model—
in the Adam specifications, these variables are declared in the
interface section. Thus, neither the output variable vy, nor the in-
put variables h; and w; have stay constraints. Section 3.2 explains
how stay constraints that remain in a solution graph indicate a spe-
cial “contributing” role for a variable, which input (or output) vari-
ables can never have.
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Figure 7. Constraint system for image scaling. Variable priorities
are expressed as stay constraints. The rectangles representing the
CSM'’s of stay constraints are drawn with double lines; their nu-
meric labels represent a possible assignment of constraint strengths.

3.1 Solving algorithm

Representing variable priorities as stay constraints allows us to use,
for example, the QuickPlan algorithm with hierarchical constraints
to solve the system (Zanden 1996). We summarize the algorithm
below.

The core of QuickPlan is an algorithm that solves the constraint
system, to the extent possible, disregarding constraint strengths.
This constraint elimination phase proceeds as follows: (1) find a
constraint with a CSM that outputs to only free variables, i.e.,
variables that can be output only by that CSM; (2) add the method
vertex and edges of that CSM to the solution graph; (3) eliminate
the constraint, i.e. all of its method vertices, from the constraint
graph; (4) repeat, using the remaining subgraph.

The elimination phase may or may not find a solution. In our
example graph, vrs is the only free variable, and once it has been
removed from the constraint graph, no free variables remain. In this
situation, the weakest constraint (any one of them, if there are many
of equal strength) is retracted from the current constraint graph,
and the elimination phase is entered again. Note that required con-
straints cannot be removed. These two phases alternate until an
empty constraint graph emerges (all required constraints have been
satisfied), or until no progress can be made (a cycle of required con-
straints exists, indicating an unsatisfiable system). This approach is
guaranteed to find a solution graph that can satisfy all required con-
straints, if one exists.

To find the least surprising solution, QuickPlan continues with
an improvement phase. During this process, the algorithm assem-
bles a new constraint graph consisting of all the constraints that are
enforced in the current solution graph, plus the strongest retracted
constraint, and retries the elimination phase (including retraction).
If the strongest retracted constraint can be enforced, it is added to
the solution; if not, it is discarded permanently. The elimination
and improvement phases are alternated until the weakest retracted
constraint is either added to the solution or discarded permanently.

The above algorithm will find the “best” solution graph, de-
fined in terms of the locally-predicate-better comparator (Freeman-
Benson and Maloney 1989) between two solution graphs. This
comparator defines a solution a to be better than b if there is some
constraint strength k, such that a satisfies all the constraints that b
satisfies that are stronger than k, and q satisfies one more constraint
of strength k than b does. This coincides with favoring flows that
preserve the values of the highest priority variables.



QuickPlan has quadratic time complexity in the number of
constraints; in practical constraint systems the algorithm is reported
to perform in linear time (Zanden 1996).

Finally, the full constraint system formulation, as well as the
use of stay constraints and QuickPlan are part of our prototype sys-
tem. The deployed property model library currently uses a simpler
algorithm that may reject certain cyclic constraint graphs that the
prototype system can handle.

3.2 Capturing intent from the solution graph

When a constraint system is solved, new values for the property
model variables are computed. For the purposes of synthesizing
command parameters from a dialog, only the result variable is
needed. This is not, however, the only useful data that is produced
when the solver is run. The solution graph also gives a way to
distinguish the variables intentionally supplied by the user from
those that were calculated or those picked up from the surrounding
context. This turns out to be essential, for example, when recording
or playing back scripts.

Specifically, in our image-resize dialog, several variables are
used for command parameter synthesis, even though the result
variable will ultimately contain only the values of absolute height
and width. But, when recording the outcome of the dialog in a
script, however, we are interested in which values the user directly
contributed. Consider the case where the preserve ratio flag is not
set, and the relative values were changed more recently than the
absolute values, say to 50% each. In this case, the resulting absolute
width and height, 750 and 1050 are derived variables. The initial
height and width variables were populated from the document
model. We find it useful to refer to initial values like these, i.e.,
those that are picked up from a particular (document) context rather
than the user, as input variables. The set of non-derived, non-input
variables, that is, the set of variables supplied directly by the user,
that contribute in some way to the result will be referred to as
contributing variables.

What should be recorded in a script as a result of exercising
the dialog as described above is the tuple consisting of relative
height: 50, relative width: 50, preserve ratio: false. This way, when
the script is run later against an image with initial dimensions 600
by 800, it will have the intended effect of scaling the image by
50 percent in each dimension, down to 300 by 400. Had we failed
to recognize the user’s intent, and stored the initial variables, or
the absolute variables, the script would have incorrectly resized the
second document to 750 by 1050.

Solution graphs, as we have described them so far, allow us
to distinguish derived variables from non-derived variables; non-
derived variables are those with no in-edges, except from possibly
a node representing a stay constraint. Of non-derived variables, we
need to also distinguish between input variables and contributing
variables in order to capture intent. As only interface variables are
given stay constraints in the constraint graph, an in-edge from a stay
constraint for a given variable in a solution graph indicates that a
variable is a contributing, rather than input, variable.

3.3 Solver preconditions

We note that finding an acyclic solution to an arbitrary multi-way
dataflow constraint system is an N P-complete problem; complex-
ity characteristics of variations of constraint satisfaction problems
are described in (Trombettoni and Neveu 1997). However, the prob-
lem is polynomial time if the method restriction holds, which re-
quires that every CSM of a constraint use all of the constraint’s
variables as either an input or output of the method. This restriction
need not be obeyed in property model specifications, for example,
in constraints that are optional.
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Figure 8. Translation that removes cyclic methods. Current values
of the variables [, r, and m are hardwired into the functions of
methods a, b, ¢, and d, which allows removal of the cyclic inputs to
these methods.

Consider a case of command parameter synthesis where some
variable x can be computed from another variable y, say, according
to z < f(y), but x can also be specified directly. If y has a higher
priority than z, then there is some relation r such that r(z,y)
must hold; but if « has a higher priority, nothing is required from
x and y. The relation to enforce between variables x and y is
thus T V r(z,y), which, of course, is always true. To model such
an optional constraint in a way that does not violate the method
restriction, we use two CSMs: one that computes  «— f(y) as
the programmer has specified, and another that computes y from x
using a function that ignores the value of its input (), and returns
the current value of y instead. Note, this means the functions used
in the execution phase may depend on the current values of the
constraint system. The general transformation that we apply to
optional constraints is to add a CSM, whose outputs are all the
constraint’s variables that are not outputs of any other CSM in the
constraint, and whose inputs are all the constraint’s variables.

Another feature disallowed in constraint graphs is the presence
of methods whose input and output variables overlap—such meth-
ods introduce a cycle immediately, and can never be included in
an (acyclic) solution graph. Constraints violating this restriction,
however, are encountered frequently. For example, consider the
left-hand side of Figure 8: a typical user interface bound to this
kind of system would be three sliders, where the “middle” slider
is guaranteed to always stay within the limits of the “left” and
“right” sliders—moving any of the sliders will cause the others
to move to retain this guarantee. For example, the CSM a com-
putes m «— max(l,m). To remove the cyclic method (and en-
force method restriction), we replace m on the right-hand side
with a constant, the current value of m upon entering the execu-
tion phase, leaving us the CSM with one input and one output:
m «— max(l, Mcurent ). All other cyclic methods are translated sim-
ilarly; the result is shown on the right-hand side of Figure 8.

4. Property model system architectures

In Section 1 we stated that when incidental algorithms and data
structures in command parameter synthesis code are replaced with
explicit property models, reuse is greatly increased. A reusable
property model library plays a central role in user interface archi-
tectures, relieving the programmer from the burden of the majority
of user-interface related tasks. Instead the programmer focuses on
the identification and declarative specification of the relevant vari-
ables and relationships unique to the commands used.

This section sketches the software architecture surrounding the
currently deployed property model component implementation,
and gives examples of how the use of explicit property models
makes it possible to provide functionality that is reusable across
different property model instances—and thus between different
interfaces. In particular, we focus on reuse across both dialog han-
dling code and script recording/playback, and the generic mech-
anism of capturing a user’s intent in a script. We provide some
measures to quantify the gains in reuse in Section 5.
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Figure 9. A high level overview of the property, layout and widget
library components.

4.1 Architecture

As described in earlier sections, the algorithmic core of a property
model library is the prioritized constraint solver. To this we add
a declarative language for describing constraints and relationships
on a collection of values (typically the parameters to an application
command) together with a parser for this language. These com-
ponents give clients a concise mechanism for explicitly modeling
parameters for particular commands.

The property model library provides the model for a clean
Model-View-Controller system. In our architecture, the views and
controllers are furnished by widget component libraries. Since most
widget libraries do not cleanly separate the model, view, and con-
troller, a thin wrapper typically must be provided to adapt the wid-
gets for use with the property model library. (For example, most
user interface toolkits tightly couple view and controller function-
ality, and fail to distinguish, for update notification purposes, the
cases where a value is set programmatically versus the cases where
it is set by the user.) When bound to a user interface, the property
model library provides the logic that controls the user interface be-
havior.

Systems that use the property model library for user interface
command parameter synthesis typically also make use of an inde-
pendent yet complementary library for widget layout (ASL 2005).
The layout library consists of a solver and a declarative language
for constructing a user interface. The layout solver takes into ac-
count a rich description of user interface elements to automatically
achieve a high quality layout rivaling what can be achieved with
manual widget placement. With the layout library, a single declara-
tive user interface description is used for multiple operating system
platforms and for localizing to different languages. The widget lay-
out library is independent of the widget toolkits used, as explained
in (Jarvi et al. 2007). A high level overview of the components de-
scribed so far is given in Figure 9.

4.2 Scripting

Program logic that needs to work with incidental data structures
must be repeated several times. For example, the validation logic,
rejecting invalid input values for individual user interface elements
or for combinations of user interface elements, is often entangled
with the widget event handling code. Industrial strength applica-
tions, however, must also support scripting, and the validation logic
for parameters to script commands is typically re-implemented sep-
arately from that of the dialog handling code. Two parallel im-
plementations of the same logic, written using different APIs, is
a heavy burden and a very common source of defects. To work
around this problem, applications may resort to hacks like having
scripts launch a dialog, populate its widgets’ values, and simulate
events that trigger the dialog’s validation code.

In system architectures using property models, this situation is
notably improved. In Section 3.2 we explained the importance of
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capturing intent when generating scripts from user-dialog inter-
action, and how the intent can be obtained from the information
captured in the solution graphs. In practice, clients of the property
model library need not be aware of the intricacies of a constraint
solver. A typical client use case might be as simple as: put up a
modal dialog, let the user interact with it, and when the dialog is
closed by pressing OK, use the returned data to synthesize parame-
ters for an associated command and capture user’s intent if record-
ing a script. We describe a simplified version of the “Modal Dialog
Interface Kit API” (ASL 2005), that supports this use case.

The modal dialog interface kit provides a single function that
brings up a dialog and manages it with the assistance of the property
model, layout, and widget libraries:

dialog_result_t handle_dialog(
const dictionary_t& input_variables,
istreamé& layout_definition,
istream& property_model_definition

)

The dictionary_t type is an associative array data structure. The
input_variables dictionary contains the contextual information to
populate the property model’s input variables. The two input
streams supply the declarative layout and property model speci-
fications: the dialog’s presence and behavior are entirely governed
by these specifications.

When the dialog is dismissed, the caller receives the result in
a dialog_result_t structure, containing (1) a complete parameter set
(output variables of the property model), ready to be supplied to
the command whose parameters the property model was designed
to synthesize; (2) the set of contributing variables that reflect the
user’s intent in synthesizing the command parameters; and (3) the
action that was used to terminate the dialog, for example, an in-
dication as to whether the dialog was dismissed via an “OK” or
a “Cancel” button. Enabling and disabling widgets, updating val-
ues of widgets as responses to changes in values of other widgets,
determining the contributing values, and so forth, are all handled
behind the scenes by the libraries: the user only provides the con-
text variables along with the specifications for the property model
and widget layout.

Playback of scripts also makes use of the property model library.
The sequence of events is as follows. A recorded action in a script
specifies which command to execute, together with the context-
independent values that contribute to synthesizing the parameters
for the command. When a script is executed in a particular con-
text, e.g. against a certain document, the application constructs a
property model for the command specified in the script, and pop-
ulates the input variables of the property model from the context-
dependent data, and the contributing interface variables from the
values stored in the script. The application then asks the library to
solve the property model and uses the resulting output variables to
obtain the exact parameters for the command to be executed.

5. Experience

At the time of this writing, Adobe is at the beginning stages of a
planned, wide-scale deployment of the property model library, in
conjunction with a change of widget library components. It is still
too early to judge the overall success of the deployment but we are
starting to gather information.

In one application, the event handling and scripting code for
a single dialog, which accounted for 781 statements (semicolon
count) and contained five known logic defects, was replaced by a
property model description with 46 statements. No defects in the
resulting dialog have been found. Generally, a reduction of 8-10 to
one in statement counts and improved quality are being reported.
The long-term expectation is that more features will follow from



this conversion; for example, adding scripting support to those
applications that do not currently provide it and improving the
scripting support in those that do.

The conversion has so far progressed relatively smoothly, but
not without difficulty. There have been a few instances where the
existing logic was incomplete or inconsistent, forcing a redesign
of the component and user interface. In the version shipped at the
time of the initial deployment, some issues were encountered in the
design; for example, in disabling user interface elements based on
the state of the property model, the granularity for detecting invalid
states is too coarse; in certain cases valid operations are disabled
unnecessarily.

6. Related work

Systems based on declarative specifications are common in the area
of user interfaces. The combination of procedural and declarative
program code has found great success in, for example, GUI ele-
ment layout. The most familiar example is perhaps HTML, CSS,
and DOM combined with Javascript. The QTk library (Grolaux and
Roy 2001) in Mozart/Oz, Glade (Feldman 2001), XUL (Deakin
2006; Mozilla 2006), XAML (XAML 2008), and XForms (Boyer
et al. 2007) serve as examples. Some of the above systems, along
with rule-based systems such as Drools (Proctor et al. 2008),
Jess (Friedman-Hill 2008), and R++ (Litman et al. 2002), also sup-
port the specification of rules for maintaining consistency across
values in user interfaces. These systems, like ours, offer the ability
to express certain relationships concisely. Property models go be-
yond this, by not only providing the ability to create rules that assist
in producing a valid result, but by providing an explicit model from
which the client can programmatically capture notions like intent
for script recording, and so on.

The above rule-based systems do not restrict the expressive
power of the language specifying the rules. This lack of restric-
tions gets in the way of realizing the above benefits. For example,
XForms supports declarative (one-way) constraints, but also pro-
vides open-ended support for user scripts (Javascript) to be bound
to events that can, in turn, read and write arbitrary variables in the
model. In addition to the dependencies between variables arising
from the constraints, the scripts can hide arbitrary dependencies,
leading to incidental data structures that cannot be analyzed.

Constraint systems have been studied extensively for use in
user interfaces, mostly for automated element layout, but also for
maintaining consistency across data in user interface elements, as
in command parameter synthesis. A large number of declarative,
constraint-based GUI systems have been proposed, for example,
Sketchpad (Sutherland 1964), Amulet (Myers et al. 1997), Gar-
net (Myers et al. 1990), as well as ThingLab I and II, DeltaBlue,
and SkyBlue (Sannella 1994), but, except for user interface element
layout, they have generally not been adopted in industrial software
development. The system described in this paper draws from this
line of work; in particular, we use the algorithms and representa-
tions for hierarchical multi-way dataflow constraint systems (Zan-
den 1996).

The basic architecture of property models is based on the
Model-View-Controller pattern (Krasner and Pope 1988). This pat-
tern is identified as being important for the separation of concerns
in user interfaces in a recent work (Goderis et al. 2007) aimed at
untangling application logic from user interfaces.

7. Conclusions and future work

Ask nearly any software engineer what they most dislike in their
work and the answer will be “building the user interface.” Even
working on products where an automatic layout library frees the
engineer from mundane tasks such as placing a button at just
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the right pixel location, the effort to build the human interface is
onerous. As code associated with the human interface accounts for
nearly a third of the code necessary to implement a new feature for
an application, increase in code reuse in this area has a significant
impact on productivity.

Property models provide an explicit means for modeling what
is traditionally managed with complicated event handling code. It
reduces the amount of redundant logic and consolidates common
logic for reuse and sharing. Based on our experiences with the
property model approach so far, code that implements command
parameter synthesis in user interfaces is typically replaced with a
declarative description that can be one tenth of the size and have
much reduced complexity of the original code.

Increasingly, applications are expected to share major user in-
terface elements as they are targeted to move beyond working in
isolated domains, to become parts of suites of application compo-
nents supporting larger workflows. Integration and code sharing is
made difficult because of the disparity between frameworks and ob-
ject models used by individual applications. The result is that the
code comprising the logic behind a user interface is re-implemented
in each application’s widget and event handling framework client
code. The property model library offers a way to consolidate, move,
and customize that logic easily between applications, regardless of
the underlying framework.

Frequently, a user interface designer is responsible for design-
ing the visuals in an application, perhaps accompanied by a textual
description of the intended behavior. This design is then given to
a programmer who “codes” both the layout and the behavior. It is
only after the design is fully implemented by the programmer that
satisfactory user testing can take place. We have prototyped visual
tools using the layout and property model libraries to allow the de-
signer to create the interface in a form that can be used directly by
the application programmer. This can greatly improve the software
construction process as it allows user interface designers to exper-
iment and get feedback about the actual behavior of their designs,
not just about the look and feel that they get with traditional builder
tools, all without the delay incurred when involving a programmer.

A fundamental assumption in the work described in this paper
is that by eliminating incidental data structures, and replacing them
with explicit models, we can produce more robust software with
very high levels of reuse. We have carried out this process for the
incidental data structures and the code that operates on them in the
domain of user interface programming, with a focus on command
parameter synthesis. The process is not trivial, it requires much the
same work as is involved when designing and implementing new
reusable library components: a careful analysis of the nature of the
relevant data structures and algorithms, an effort to find the correct
abstractions, stepwise refinement, a good deal of trial and error, and
so forth.

We will continue to refine the abstractions and algorithms for
property models, explore alternative mechanisms for representing
disjunctive constraints, automate model checking for guaranteeing
desired characteristics of property models, work on improving and
optimizing the solver algorithms for the particular kind of con-
straint systems that arise from property models, etc. Future plans
include extending property models to support variables that are
more complex than single data values, such as lists or trees. Not
only will this support richer user interfaces, but it will open the
door to property models being applied in the domain of document
object modeling.
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