LIVING IN AN
EXCEPTIONAL
WORLD

SEAN PARENT

Handling exceptions is a difficult but important part of developing
Macintosh applications. This article provides a methodology as well as a

set of C tools for bandling exceptions and writing robust code.

Techniques and examples are provided for dealing with some of the

Toolbox idiosyncrasies, and some interesting features of the C
preprocessor; MacsBug, and MPW are explored.

Writing software on the Macintosh can be difficult. Writing robust software on the
Macintosh is even more difficult. Every call to the Toolbox is a potential source of a
bug and there are too many cases to handle—what if there isn’t enough memory, or
the disk containing the code has been ejected, or there isn’t enough stack space, or
the printer is unplugged, or . . . The list goes on, and a well-written application is
expected to handle every case—always recovering without loss of information. By
looking at how software is developed, this article introduces a methodology and tools
for handling the exceptional cases with minimal impact on the code that handles the

task at hand.

VERSION 1: NORMAL FLOW OF CONTROL

When writing code, programmers usually begin by writing the normal flow of
control—no error handling. The code shown below is a reconstruction of the first
version of a printing loop routine that eventually went out as a Macintosh Technical
Note, “A Printing Loop That Cares . . .” (#161). Note that comments were removed

to make the structure more apparent.

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>

void PrintStuff(void)

{

GrafPtr oldPort;

SEAN PARENT (Applelink PARENT, Internet
parent@apple.com) is a parent, but Parent is his
last name, not his title. He grew up in Renton,
Washington, with his parents (you know, the

people who produced him), who are also Parents.

Sean came fo Apple to pursue his lifelong inferest
in reference manuals. He enjoys a good ANSI
standards document during breakfast, and likes
catchy punch lines such as, "No, no! | said

'ANSI," not 'ASCII'!" Sean also likes to write a
good hack, and consistently comes in nextto-
second-best at the annual MacHack MacHax
Hack Contest. Unable to hide his prowess, he
gave in to the inevitable job at Apple, and now
he wants fo change the world, one programming
paradigm at a time. ®

LIVING IN AN EXCEPTIONAL WORLD August 1992

65

66

short

copies, firstPage, lastPage, numCopies, printmgrsResFile,
realNumberOfPagesInDoc, pageNumber;

DialogPtr printingStatusDialog;
THPrint thePrRecHdl;

TPPrPort thePrPort;

TPrStatus theStatus;

GetPort(&oldPort);
UnLoadTheWorld();
thePrRecHdl = (THPrint)NewHandle(sizeof(TPrint));
PrOpen();
printmgrsResFile = CurResFile();
PrintDefault (thePrRecHdl);
if (PrStlDialog(thePrRecHdl)) ({
realNumberOfPagesInDoc = DetermineNumberOfPagesInDoc (

(**thePrRecHdl).prInfo.rPage);

if (PrJobDialog(thePrRecHdl)) {

numCopies = (**thePrRecHdl).prJob.iCopies;
firstPage = (**thePrRecHdl).prJob.iFstPage;
lastPage = (**thePrRecHdl).prJob.iLstPage;
(**thePrRecHdl).prJob.iFstPage = 1;
(**thePrRecHdl).prJob.iLstPage = 9999;
if (realNumberOfPagesInDoc < lastPage) {
lastPage = realNumberOfPagesInDoc;
}
printingStatusDialog =
GetNewDialog (257, nil, (WindowPtr) -1);
for (copies = 1; copies <= numCopies; copies++) {
(**thePrRecHdl) .prJob.pIdleProc = CheckMyPrintDialogButton;
UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);
pageNumber = firstPage;
while (pageNumber <= lastPage) {
PrOpenPage (thePrPort, nil);
DrawStuff((**thePrRecHdl).prInfo.rPage,
(GrafPtr)thePrPort, pageNumber);
PrClosePage(thePrPort);
++pageNumber;

}
PrCloseDoc (thePrPort);

if ((**thePrRecHdl).prJob.bJdDocLoop == bSpoolLoop) {
PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);

develop August 1992

PrClose();
DisposeHandle((Handle)thePrRecHdl);
DisposeDialog(printingStatusDialog);
SetPort(oldPort);

} /* PrintStuff */

VERSION 2: ERROR HANDLING ADDED

With code in the preliminary stage shown above, the flow of control is easy to follow.
After writing it, the programmer probably read through it and added some error-
handling code. Adding “if (error == noErr)” logic wasn’t difficult, but it took some
thought to determine how to handle the cleanup and deal with the two loops. Some
more error-handling code may have been added after running the routine under
stressful conditions. Perhaps it was reviewed by lots of people before it went out as a
"Technical Note. Here’s the new version of the code (with the added error-handling
code shown in bold):

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>

void PrintStuff(void)
{
GrafPtr oldPort;
short copies, firstPage, lastPage, numCopies, printmgrsResFile,
realNumberOfPagesInDoc, pageNumber, printError;
DialogPtr printingStatusDialog;
THPrint thePrRecHdl;
TPPrPort thePrPort;
TPrStatus theStatus;

GetPort(&oldPort);
UnLoadTheWorld();
thePrRecHdl = (THPrint)NewHandle(sizeof(TPrint));
if (MemError() == noErr && thePrRecHdl != nil) {
PrOpen();
if (PrError() == noErr) {
printmgrsResFile = CurResFile();
PrintDefault(thePrRecHdl);
if (PrError() == noErr) {
if (PrStlDialog(thePrRecHdl)) ({
realNumberOfPagesInDoc = DetermineNumberOfPagesInDoc (
(**thePrRecHdl).prInfo.rPage);
if (PrJobDialog(thePrRecHdl)) ({
numCopies = (**thePrRecHdl).prJob.iCopies;

LIVING IN AN EXCEPTIONAL WORLD August 1992

67

68

firstPage = (**thePrRecHdl).prJob.iFstPage;

lastPage = (**thePrRecHdl).prJob.iLstPage;

(**thePrRecHdl) .prJob.iFstPage = 1;

(**thePrRecHdl) .prJob.iLstPage = 9999;

if (realNumberOfPagesInDoc < lastPage) {
lastPage = realNumberOfPagesInDoc;

}
printingStatusDialog =
GetNewDialog (257, nil, (WindowPtr) -1);
for (copies = 1; copies <= numCopies; copies++) {
(**thePrRecHdl) .prJob.pIdleProc =
CheckMyPrintDialogButton;
UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);
if (PrError() == noErr) ({
pageNumber = firstPage;
while (pageNumber <= lastPage &&

PrError() == noErr) {
PrOpenPage (thePrPort, nil);
if (PrError() == noErr) ({

DrawStuff((**thePrRecHdl).prInfo.rPage,
(GrafPtr)thePrPort, pageNumber);
}
PrClosePage(thePrPort);
++pageNumber;

}
PrCloseDoc (thePrPort);

}
} else PrSetError(iPrAbort);
} else PrSetError(iPrAbort);

}
if (((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) &&

(PrError() == noErr)) {
PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);

}

printError = PrError();

PrClose();

if (printError != noErr) PostPrintingErrors(printError);

}
if (thePrRecHdl != nil) DisposeHandle((Handle)thePrRecHdl);

if (printingStatusDialog != nil) DisposeDialog(printingStatusDialog);
SetPort(oldPort);
} /* PrintStuff */

develop August 1992

Can you easily follow the normal flow of control in the second version? What if an
error occurs? Could an error ever go unreported? Could this code crash because it
didn’t handle an error? Does this routine always clean up after itself? These questions
are difficult to answer because the normal flow of control of this routine is
intertwined with the flow that will occur in the event of an error. If the two could be
separated, it would be much easier to tell what the routine does normally and how
things are handled when something goes wrong. Besides making the code easier to
read, a methodology that allowed such separation would make the code easier to
write, debug, and, maintain.

PROGRAMMING BY CONTRACT

Programming by contract is based on the assumption that all correct routines have a
contract, either stated or implied, with their caller. The contract states that if a given
set of preconditions is met, the routine either succeeds or flags an exception and
leaves the machine in a known or determinable state. This contract is flexible enough
to be applied to any correct code.

The secret to writing robust code is to understand what the preconditions of a given
routine are, when an exception can be flagged, and how to handle the exception.
Separating the logic that checks conditions and handles exceptions from the
algorithm of the routine allows code to be written in a straightforward way with the
flow of control seen as easily as in our first version.

PRECONDITIONS

The preconditions of a routine specify the state the machine must be in for the
routine to execute without failure (where failure implies a crash—not flagging an
exception). A routine may require in its precondition items such as

* a previously called initialization routine

* valid ranges for value parameters

* available memory

* initialization of global state

* a specific software version
For some routines the preconditions may be readily apparent either in the interface
or in the documentation. Sometimes it’s necessary to experiment to discover the
preconditions of a routine. When writing a routine, the “strength” of the

precondition can be set according to the use of the routine. For example, a routine
named DivideLong is written with a description that states:

Given two numbers, numer and denom, DivideLong will divide numer by
denom, set numer to the result, and return noErr. If denom is zero, DivideLong
will return divideByZeroErr and leave numer unchanged.

LIVING IN AN EXCEPTIONAL WORLD August 1992

69

70

With this description, numer and denom can be any numbers of the proper type.
"This is a weak precondition. Another description might read:

Given two numbers, numer and denom, DivideLong will divide numer by
denom and return the result. If denom is zero, DivideLong will fail.

With the second description, it would be the caller’s responsibility to ensure that
denom isn’t zero. This is a strong precondition.

In general, it’s better to have a strong precondition in a routine that is used within a
sequence of related routines or shares conditions with other routines, because it
generates more efficient code by eliminating error checking. It’s better to have a weak
precondition in routines that are called only once or at the start of a sequence of
related routines. Routines with weak preconditions free the caller from ensuring the
state of the machine before making the call.

A precondition can be strengthened by the caller but must not be weakened.
Strengthening is useful when you’re making a sequence of related calls where being
sure additional conditions are met guarantees that no routine flags an exception. For
example, given the first description of DivideLong it would be valid for a caller to do
the following:

if (denom != 0) {
(void)DivideLong(&numer a, denom)
(void)DivideLong(&numer b, denom)
} else HandleError();

/* Ignore return. */
/* Ignore return. */

.
I
.
I

"This may be more desirable than checking for a result of divideByZeroErr after each
call. An example of weakening a precondition would be to call DivideLong as
described in the second description without ensuring that denom isn’t zero. This
would constitute a bug.

POST-CONDITIONS

Post-conditions specify the state of the machine on the return of a routine. They
include side effects and changes to global state as well as function results and variable
parameters. The post-conditions of a routine must be determinable for the routine to
be correct. They don’t vary in strength and, if not met, the routine has a bug. A
thorough understanding of the post-conditions of a routine is required to ensure that
the routine is being called correctly and that cleanup can occur when the routine flags
an exception.

Sometimes it’s necessary to rephrase the preconditions and post-conditions of a
routine to use it correctly. For example, a common misconception is that the only
preconditions for calling TEKey are that it has passed a valid TEHandle and the
appropriate Managers have been initialized. Since there’s no mechanism for TEKey

develop August 1992

to flag an exception, the assumption is that it can’t fail. But TEKey may need to grow
the hText handle if the character isn’t replacing others and isn’t a backspace. Growing
a handle requires memory—something there may not be enough of. Since TEKey
can fail without flagging an exception with these preconditions, it appears to be
incorrect and contain a bug. However, by strengthening the preconditions to require
that h'Text must be able to grow by the size of a character, the routine is once again
correct. Strengthening preconditions is an easy fix often used in system software. (See
the section “Preflighting Calls” for tips on how to ensure preconditions.)

HOW TO WRITE CHECKS

The check macro is used to ensure that static preconditions and post-conditions are
being met during development. It also documents conditions for you, making it a
very useful tool that adds to the maintainability of the code. Unfortunately, these
conditions cannot be expressed directly in the interface so as to be more apparent to
the caller. The syntax for check is

check(assertion);

"To use the check macro, include Exceptions.h (provided on the Developer CD Series
disc). For MacsBug, use ResEdit to add Exceptions.rsre to the DebuggerPrefs file in
the System Folder.

What check does depends on the setting of the compile-time variable
DEBUGLEVEL. DEBUGLEVEL can be set to one of the following values:

* DEBUGOFF or DEBUGWARN: check does nothing and

assertion is not evaluated.

e DEBUGMIN or DEBUGSYM: assertion is evaluated and, if it’s
false (zero), a debugger break is executed. (The debugger break is
Debugger() for DEBUGMIN and SysBreak() for DEBUGSYM.
The first is useful for low-level debuggers like MacsBug or
TMON, the second for symbolic debuggers like SourceBug,
SADE, or THINK C.)

e DEBUGON or DEBUGFULL.: gssertion is evaluated and, if it’s
false (zero), MacsBug is entered and the dprintf demd is invoked to
display more information. If DEBUGON, assertion is displayed
and if DEBUGFULL, the source code file and line number are
also displayed (see “Wonders of MacsBug and dprintf” for more
information about dprintf).

Normally, check is used at the start and end of a routine. At the start it’s used to
ensure that parameters are within a given range and are not specific values (such as
nil). At the end it’s used to ensure that allocations succeeded and results are as
desired.

LIVING IN AN EXCEPTIONAL WORLD August 1992

72

WONDERS OF MACSBUG AND DPRINTF

The MacsBug demd, dprintf, is used by the require and
check macros to display useful debugging information.
The dprintf command is also a powerful tool that provides
all the features of the standard printf but uses MacsBug as
the console. The dprintf command assumes MPW
parameter-passing conventions. The syntax for dprintf is

dprintf([no]trace, formatString, ...);

where trace and notrace are used to specify whether
or not to continue after displaying the information in
MacsBug. The variable formatString is a printf style-
format string with some extensions (see the comment in
the Exceptions.h file on the Developer CD Series disc).
Following formatString are the parameters to display. This
can be a very useful tool for viewing complex structures or
difficultto-read values like floating- or fixed-point numbers.

The implementation of the dprintf demd is shown in the
DPrintf.c file on the CD. It's fairly straightforward and can
be extended easily to add any special data types
required (for example, a t format character that would
take a pointer to text and an integer length and display
the text). The demd is invoked from C using the inline
declaration for dprintf. The inline declaration invokes the
DebugStr trap and pushes a long on the stack. The push
is required because DebugStr uses Pascal calling
conventions and so pops the [no]trace string from the
stack. Since dprintf is a C-based function, the stack is
fixed, so the string isn't popped twice. Both trace

and notrace are macro Pascal strings containing
“.dprintf;doTrace” and “;dprintf”. Since the strings begin
with a semicolon, MacsBug interprets them as commands
and executes them. The demd then fetches the parameters
from the stack according to formatString and displays
them. The MacsBug macro doTrace evaluates to “g” or
“"_It's used to switch tracing between trace and break
by entering either traceGo or traceBreak in MacsBug.

When developing software, it's useful to insert dprintf
statements to display information in sections of code that

are executed only in unusual circumstances. If dprintf is
bracketed with #if debugon / #endif directives, it
compiles out when DEBUGLEVEL is set to DEBUGWARN
or DEBUGOFF. With trace the information is displayed
without seriously interrupting the execution of the code.
The trace macro is also useful for logging timing
statistics by displaying Ticks. Since formatString is
interpreted in MacsBug with interrupts disabled, even a
complex formatString has minimal impact on timing
results.

MACSBUG POWER USER TIP

If you have more than one monitor, you can use the swap
command to make MacsBug always visible and use
dprintf with trace to continually log information. You can
set which screen MacsBug uses by opening the Monitors
control panel, holding down the Option key, and
dragging the “Happy Macintosh” to the monitor on which
you want fo display MacsBug (you have to restart for it to
take effect).

MPW POWER USER TIP
At the end of the comment for dprintf in Exceptions.h is a
section that uses Echo to pipe code to the assembler.

/***

Echo " dnd
PRINT OFF ,NOHDR and
INCLUDE 'Traps.a' and
PRINT ON and
PROC anad
_DebugStr Jand
SUBQ #4,SP ; Fix the stack dnd
ENDPROC danad
END danad

" | Asm -1

***/

If you select this section and press Enter, it generates a
listing with hex output. This is a handy way to generate
and document inline functions.

develop August 1992

REQUIREMENTS FOR BETTER LIVING

Although check can ensure that preconditions and post-conditions are being met
during development, check is of limited value in situations where it cannot be
determined whether the conditions are being met statically, because

* it disappears when DEBUGLEVEL is set to DEBUGOFF

* it doesn’t provide sufficient support for handling exceptions to
return the machine to a known state

What's needed is a mechanism that does not compile out and provides the ability to
invoke a handler when assertion fails.

WHAT WE REQUIRE
The require macro was created to make handling exceptions simpler. The syntax for
require is

require(assertion, exception);

If assertion evaluates to false (zero), execution continues at the handler exceprion. (The
exception parameter, by convention, shares the name of the routine that failed, but this
isn’t mandatory.) Handlers are typically written as shells with control falling from one
to the next, cleaning up after prior calls along the way. The extent of the cleanup
needed gets deeper as more of the routine succeeds. Figure 1 shows an extended form
of require called require_action. The extended form executes a statement when
assertion fails before executing the handler. This is most useful for setting an error
variable. The syntax for require_action is

require_action(assertion, exception, action);

Like check, require breaks into MacsBug and displays pertinent information
depending on the settings of DEBUGLEVEL. Unlike check, require does not
compile out when DEBUGLEVEL is set to DEBUGWARN or DEBUGOFE. It
evaluates assertion and invokes the handler (and action), but no break occurs.

The nrequire macro is equivalent to require(lassertion, exception). However, under
rare circumstances it generates more efficient code, and when debugging is on, it
displays the value of assertion. It’s also easier to read. As a general rule, use require
with handles and pointers and nrequire with errors.

VERSION 3: IMPROVED WITH REQUIRE

A close look at the code in version 2 reveals some problems:

* No error handling is done after PrCloseDoc, though any errors
will get caught either after the next PrOpenDoc or on exit.

73

LIVING IN AN EXCEPTIONAL WORLD August 1992

OSErr CreateContent(WindowPtr window)
{
OSErr error;
long scrapSize, tempLong;
HContent content;

check action(window, return(nilParamErr););

content = (HContent)NewHandle(sizeof(SContent));
— require_action(content, NewHandle content,
error = MemErr(););

(*content)->picture = (PictHandle)NewHandle(0);
(—————— require_action((*content)->picture, NewHandle picture,
error = MemErr (););

scrapSize = GetScrap((Handle) (*content)->picture,
'PICT', &tempLong);

— require action((scrapSize >= noErr) || (scrapSize ==
noTypeErr), GetScrap, error = (OSErr)scrapSize;);
if (scrapSize == noTypeErr) {

DisposeHandle((Handle) (*content)->picture);
(*content)->picture = nil;

SetWRefCon(window, (long)content);

return(noErr);

GetScrap:
DisposeHandle((Handle) (*content)->picture);

~—>
— NewHandle picture:
~—

DisposeHandle((Handle)content);
NewHandle content:

return(error);
} /* CreateContent */

Figure 1
Control Flow for require_action

* No error handling is done for GetNewDialog; if it fails it may
result in a crash.

¢ If the NewHandle at the start of the code fails, it won’t print and
the user is never notified why.

* Ifan error occurs in the copies loop, the loop isn’t terminated.

74

develop August 1992

If printing is well behaved and does nothing once PrError has been set, none of these
problems poses much of a threat to the actual stability of the code (with the exception
of GetNewDialog). However, the use of require when writing the code could have
avoided the problems and the code would be easier to understand and maintain. This
is shown in the code below—version 3. The structure of the code in version 3 is
almost identical to version 1 with the addition of the require statements and the
handlers at the end. Writing code like this is straightforward. When a routine is
called that can flag an exception, a require statement is added with a handler. The
statements executed in a handler typically clean up after the routines called before the
routine flagging the exception. (See the section “When To Clean Up” for more
discussion.) Although PrClose should never cause an error, acheck statement was
added during development.

Here’s version 3 of the code (with changes from version 1 shown in bold):

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>
#include <Errors.h>
#include "Exceptions.h"

void PrintStuff(void)
{
GrafPtr oldPort;
short copies, firstPage, lastPage, numCopies, printmgrsResFile,
realNumberOfPagesInDoc, pageNumber;
DialogPtr printingStatusDialog;

OSErr theError;
THPrint thePrRecHd];
TPPrPort thePrPort;
TPrStatus theStatus;
long contig, total;

enum { dialogSlop = 8192 };

GetPort(&oldPort);
UnLoadTheWorld();

thePrRecHdl = (THPrint)NewHandle(sizeof(TPrint));
require action(thePrRecHdl, NewHandle, theError = MemError(););

PrOpen();
nrequire(theError = PrError(), PrOpen);

printmgrsResFile = CurResFile();

75

LIVING IN AN EXCEPTIONAL WORLD August 1992

PrintDefault(thePrRecHdl);
nrequire(theError = PrError(), PrintDefault);

if (PrStlDialog(thePrRecHdl)) ({

realNumberOfPagesInDoc = DetermineNumberOfPagesInDoc (
(**thePrRecHdl).prInfo.rPage);

if (PrJobDialog(thePrRecHdl)) {
numCopies = (**thePrRecHdl).prJob.iCopies;
firstPage = (**thePrRecHdl).prJob.iFstPage;
lastPage = (**thePrRecHdl).prJob.iLstPage;
(**thePrRecHdl).prJob.iFstPage = 1;
(**thePrRecHdl).prJob.iLstPage = 9999;
if (realNumberOfPagesInDoc < lastPage) {

lastPage = realNumberOfPagesInDoc;

PurgeSpace (&total, &contig);
require action(contig >= dialogSlop, PurgeSpace,
theError = memFullErr;);

printingStatusDialog =
GetNewDialog (257, nil, (WindowPtr) -1);
require action(printingStatusDialog, GetNewDialog,
theError = memFullErr;);

for (copies = 1; copies <= numCopies; copies++) {
(**thePrRecHdl) .prJob.pIdleProc = CheckMyPrintDialogButton;
UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);
nrequire(theError = PrError(), PrOpenDoc);

pageNumber = firstPage;

while (pageNumber <= lastPage) {
PrOpenPage (thePrPort, nil);
nrequire(theError = PrError(), PrOpenPage);

DrawStuff((**thePrRecHdl).prInfo.rPage,
(GrafPtr)thePrPort, pageNumber);

PrClosePage(thePrPort);

nrequire(theError = PrError(), PrClosePage);

++pageNumber;
}
PrCloseDoc (thePrPort);
nrequire(theError = PrError(), PrCloseDoc);

develop August 1992

if ((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) {
PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);
nrequire(theError = PrError(), PrPicFile);

PrClose();
ncheck (PrError());

DisposeHandle((Handle)thePrRecHdl);
DisposeDialog(printingStatusDialog);
SetPort(oldPort);

return;

PrOpenPage:
PrClosePage (thePrPort);
PrClosePage:
PrOpenDoc:
PrCloseDoc (thePrPort);
PrPicFile:
PrCloseDoc:
DisposeDialog(printingStatusDialog);
GetNewDialog:
PurgeSpace:
PrintDefault:
PrOpen:
PrClose();
DisposeHandle((Handle)thePrRecHdl);
NewHandle:
SetPort (oldPort);
PostPrintingErrors (theError);
} /* PrintStuff */

PREFLIGHTING CALLS

Preflighting a call is the process of ensuring that the preconditions are met. Usually
this isn’t necessary since the preconditions will be satisfied by handling the exceptions
of prior calls or will be implicit in the caller’s preconditions. For example, there’s no
need to ensure that the TEHandle being passed to TEKey isn’t nil if the exceptional

case of the previous TENew returning nil was handled.

In case preconditions haven’t been satisfied by handling the exceptions of previous
calls, require can be used to check the precondition and invoke a handler if it’s not
being met. This is especially useful for routines that have strong preconditions or

LIVING IN AN EXCEPTIONAL WORLD August 1992

77

78

preconditions that are difficult to determine. Earlier, TEKey was used as an example
of a routine with strong preconditions. To ensure the preconditions for TEKey,
require could be used as follows:

OSErr SafeTEKey(short key, TEHandle hTE) ({
enum { teSlop = 1024 };

OSErr error;
TEPtr W = *hTE;
Handle hText = w->hText;

short teLength w->teLength;
SetHandleSize (hText, teLength + teSlop);
nrequire(error = MemError(), SetHandleSize);
SetHandleSize (hText, teLength);

TEKey(key, hTE);

return(noErr);

SetHandleSize:
return error;

The constant teSlop is used instead of 1 just to be safe. Adding some slop for routines
with implied, rather than stated, preconditions is always a good idea.

For some routines the preconditions are too complex or subject to change to
accurately state as an assertion. This is the case for GetNewDialog, as shown in
version 3. GetNewDialog can fail when there isn’t enough memory for one of the
numerous QuickDraw elements to be allocated, to load the WDEF, or, if the dialog
contains TextEdit items, to create the TEHandle. About all that can be done to
guarantee that GetNewDialog succeeds is to ensure that there’s a reasonable amount
of memory available. It’s fairly safe to rely on the Process Manager in System 7 to
make sure there’s space in the system heap for the WDEFE. This is what’s done in
version 3. The assertion is based on contiguous memory instead of total memory in
case the heap is too fragmented to allocate some of the larger blocks required.
Sometimes all that can be done is to increase the chances of survival.

WHEN TO CLEAN UP

Just as preconditions can sometimes be tricky to determine, post-conditions can be
hazardous as well. It’s important to understand the post-conditions of the routines
being called, so that the machine can be returned to a known state, ensuring valid
post-conditions for the calling routine. Normally, if an exception is being raised, a
routine should dispose of everything it successfully allocated, close everything it
successfully opened, and release everything it successfully locked. So, if NewHandle is

develop August 1992

CouldDialog, which was intended as a preflight
tool for GetNewDialog, is a no-op in System 7
(it's been broken since the Macintosh Il was
infroduced).®

called successfully, DisposeHandle is called in the handler. If OpenFile is called
successfully, CloseFile is called in the handler.

But this rule isn’t always true. One counterexample is the Printing Manager. Even if
PrOpen flags an exception PrClose must be called. The same is true for
PrOpenDocument and PrOpenPage.

Shared resources present another potential problem. If GetResource is successfully
called on a system resource, it’s a bad idea to release it, because it may also be in use
by another routine. SetResLoad(false) and GetResource can be called to determine
whether the resource is already in memory before loading it, and then it can be
released only if it was loaded. This, however, is taking things to an extreme. It may be
better to document that these resources may be loaded even if the routine flags an
exception. Since this is determinable by the caller, it suffices as a valid post-condition.

FUTURE DIRECTIONS

The routines and macros provided in Exceptions.h lay the foundation for writing
robust software. There are more sophisticated exception-handling mechanisms, such
as the proposed catch and throw implementation for C++. Ada has a reasonable
exception-handling mechanism, as does CLU and Eiffel. However, these mechanisms
don’t lend themselves to dealing with exceptions from routines that were not written
using the same mechanism and so are difficult to use on the Macintosh when dealing
with the OS and Toolbox. The check and require macros are flexible enough to be
useful in most situations and are implemented in C, so they can be of value for many
(if not most) existing projects. They are also C++ friendly and can be of great use to
C++ programmers as well.

After you read the code in version 3 that uses these macros it should be fairly simple
to answer the questions asked about version 2 at the beginning of the article. This is

left as an exercise.

"Turn the page if you want even more detail . . .

RELATED READING

® Macintosh Technical Note “A Printing Loop That Cares . . . (formerly #161).

® Object-Oriented Software Construction by Bertrand Meyer (Prentice-Hall, 1988).
Contains more information on programming by contract.

* Debugging Macintosh Software with MacsBug by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991). Contains additional MacsBug tips.

LIVING IN AN EXCEPTIONAL WORLD August 1992

80

MORE DETAIL THAN MOST FOLKS NEED

The require and check macro implementation is shown
in Figure 2. To ensure that there aren’t any side effects,
any macro that's larger than a single statement is
enclosed in do { } while(false). This ensures that the
macro behaves as a simple statement and can be used
anyplace a simple statement would be (such as after an
if). The do { } while(false) does not generate any
object code. In some of the macros, if statements appear
in the form

if (assertion) ; /* Do nothing. */
else { /* Do something. */ }

Under some conditions, this will generate more efficient
code than

if (!assertion) { /* Do something. */ }

(This was especially true back in the days of the MPW
3.1 compiler.) There are variables declared within the
scope of the macros when debugging is on. This avoids
side effects caused by evaluating assertion multiple times
(once in the condition and once to display it). For
example:

nrequire (ReadCharacters(), Fail);

If ReadCharacters returned a value other than nil,
MacsBug would be invoked to display the result before
executing the handler Fail. Without the local variable,
ReadCharacters would be executed a second time to
display the value. The second execution may cause side
effects like increasing a file pointer as well as reading in
a different set of characters.

When assertion is an error code returned by a function, it
can be assigned fo a variable to preserve the error. This
also keeps the exception-handling code enclosed within
the require statement. For example:

nrequire(error = GetError(), Fail);

However, with warnings set to full, this invokes a warning
because the assignment takes place as part of an if
statement. Using

error = GetError();
nrequire(error, Fail);

generates identical code (at least with MPW 3.2) and
doesn’t cause any warnings.

A macro, resume, is provided for recovering from
exceptions. It's used within a handler and takes the form

resume(exception);

where exception corresponds to exception used in a
require statement. The resume macro simply transfers
control to the point immediately following the require
statement. Because of the resume feature, multiple
require statements cannot share the same exception
handler. Sometimes sharing a handler is convenient, so
resume can be disabled with a statement:

#define resumeLabel (exception)
To reenable resume, use

#define resumeLabel (exception)\
resume_ ## exception:

There’s also a check_action macro which, like
require_action, allows a statement to be executed
when assertion fails. The check_action macro compiles
out like all check macros and should be viewed as a
developmenttime tool only. Being able to execute a
statement allows for the exit of a routine if the
preconditions aren’t met.

Seriously insane cycle counters iake note
that the MPW 3.2 C compiler doesn't reuse a
register fo store a variable in a local scope when

the register was used in a prior scope containing

a goto statement (require generates a goto).

This can lead to code that isn't as efficient as it

should be but can usually be coded around (it's

difficult to generate in the first place). Hopefully

this will be fixed in a future compiler.®

develop August 1992

#define require(assertion, exception)

do {
if (assertion) ;
else {
dprintf (notrace,
"Assertion \"%s\" Failed\n"
"Exception \"%s\" Raised",
tassertion, #exception);
goto exception;
resumeLabel (exception);
}

} while (false)

#define check(assertion)
do {
if (assertion) ;
else {
dprintf (notrace,
"Assertion \"%s\" Failed",
tassertion);

}
} while (false)

Figure 2
Implementing require and check

- s s s s s s

- s s s s s~

THANKS TO OUR TECHNICAL REVIEWERS
Scott Boyd, Konstantin Othmer, Sam Weiss. Also,
special thanks to everyone in the Print Shop
(present and former members) for using this stuff
and suggesting numerous improvements during
the past few years.®

LIVING IN AN EXCEPTIONAL WORLD August 1992

81

