
Exceptions the Other Way Around

Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

Parental Talk

Parental Talk™

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Playing with exceptions

std::expected<>

boost::outcome

std::optional<>

std::error_code

defer

errno()

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Handling exceptions is a difficult but important part of developing
Macintosh applications. This article provides a methodology as well as a
set of C tools for handling exceptions and writing robust code.
Techniques and examples are provided for dealing with some of the
Toolbox idiosyncrasies, and some interesting features of the C
preprocessor, MacsBug, and MPW are explored.

Writing software on the Macintosh can be difficult. Writing robust software on the
Macintosh is even more difficult. Every call to the Toolbox is a potential source of a
bug and there are too many cases to handle—what if there isn’t enough memory, or
the disk containing the code has been ejected, or there isn’t enough stack space, or
the printer is unplugged, or . . . The list goes on, and a well-written application is
expected to handle every case—always recovering without loss of information. By
looking at how software is developed, this article introduces a methodology and tools
for handling the exceptional cases with minimal impact on the code that handles the
task at hand.

VERSION 1: NORMAL FLOW OF CONTROL
When writing code, programmers usually begin by writing the normal flow of
control—no error handling. The code shown below is a reconstruction of the first
version of a printing loop routine that eventually went out as a Macintosh Technical
Note, “A Printing Loop That Cares . . .” (#161). Note that comments were removed
to make the structure more apparent.

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>

void PrintStuff(void)
{

GrafPtr oldPort;

LIVING IN AN EXCEPTIONAL WORLD August 1992

65
SEAN PARENT (AppleLink PARENT, Internet
parent@apple.com) is a parent, but Parent is his
last name, not his title. He grew up in Renton,
Washington, with his parents (you know, the
people who produced him), who are also Parents.
Sean came to Apple to pursue his lifelong interest
in reference manuals. He enjoys a good ANSI
standards document during breakfast, and likes
catchy punch lines such as, "No, no! I said

'ANSI,' not 'ASCII'!" Sean also likes to write a
good hack, and consistently comes in next-to-
second-best at the annual MacHack MacHax
Hack Contest. Unable to hide his prowess, he
gave in to the inevitable job at Apple, and now
he wants to change the world, one programming
paradigm at a time.•

SEAN PARENT

LIVING IN AN

EXCEPTIONAL

WORLD

1992

https://vintageapple.org/develop/pdf/develop-11_9208_August_1992.pdf

https://vintageapple.org/develop/pdf/develop-11_9208_August_1992.pdf

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

AssertMacros.h

/*
 File: AssertMacros.h

 Contains: This file defines structured error handling and assertion macros for
 programming in C. Originally used in QuickDraw GX and later enhanced.
 These macros are used throughout Apple's software.

 See "Living In an Exceptional World" by Sean Parent
 (develop, The Apple Technical Journal, Issue 11, August/September 1992)
 <http://developer.apple.com/dev/techsupport/develop/issue11toc.shtml> or
 <http://www.mactech.com/articles/develop/issue_11/Parent_final.html>
 for the methodology behind these error handling and assertion macros.

 * Macro overview:
 *
 * check(assertion)
 * In production builds, pre-processed away
 * In debug builds, if assertion evaluates to false, calls DEBUG_ASSERT_MESSAGE
 *
 * require(assertion, exceptionLabel)
 * In production builds, if the assertion expression evaluates to false, goto exceptionLabel
 * In debug builds, if the assertion expression evaluates to false, calls DEBUG_ASSERT_MESSAGE
 * and jumps to exceptionLabel
 *

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

AssertMacros.h

/*
 File: AssertMacros.h

 Contains: This file defines structured error handling and assertion macros for
 programming in C. Originally used in QuickDraw GX and later enhanced.
 These macros are used throughout Apple's software.

 See "Living In an Exceptional World" by Sean Parent
 (develop, The Apple Technical Journal, Issue 11, August/September 1992)
 <http://developer.apple.com/dev/techsupport/develop/issue11toc.shtml> or
 <http://www.mactech.com/articles/develop/issue_11/Parent_final.html>
 for the methodology behind these error handling and assertion macros.

 * Macro overview:
 *
 * check(assertion)
 * In production builds, pre-processed away
 * In debug builds, if assertion evaluates to false, calls DEBUG_ASSERT_MESSAGE
 *
 * require(assertion, exceptionLabel)
 * In production builds, if the assertion expression evaluates to false, goto exceptionLabel
 * In debug builds, if the assertion expression evaluates to false, calls DEBUG_ASSERT_MESSAGE
 * and jumps to exceptionLabel
 *

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

What is an error?

▪ Every operation has a set of preconditions

▪ When preconditions are satisfied, an operation must:

▪ Complete successfully, satisfying postconditions

▪ Or, return an error with an indication as to why the postconditions could not be satisfied

▪ There is a logically isomorphic system of thought where postconditions include the error state

Errors are about Postconditions

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

1

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Keywords: Generic programming, operator semantics, concept, regular type.

Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces. Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers. We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.

Copyright Springer-Verlag. Appears in Lecture Notes in Computer Science
(LNCS) volume 1766. See http://www.springer.de/comp/lncs/index.html . 1986 (original)

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Preconditions

▪ A Precondition is an assertion that must be true before an operation

sort(first, last, compare)

▪ [first, last) is a valid range (implying first <= last)

▪ For all p in the range [first, last), p is dereferenceable

▪ For all p, let v equal the set of values *p;

▪ For all pairs(va, vb), compare is a predicate establishing a strict-weak-order relation

▪ The domain of an operation is the set of values satisfying all preconditions

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Postconditions

▪ A Postcondition is an assertion that must be true just after an operation

▪ Unless there is an error

▪ The postcondition of sort() is that all the elements in the range [first, last) are in non-
decreasing order as defined by compare

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Class Invariants

▪ Class invariants are postconditions that hold for all operations on a type

▪ As such, they can be counted on to hold as a precondition for all operations and don’t need to be
explicitly stated.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

When to report an error

▪ An error is appropriate when a postcondition cannot be satisfied

▪ An error is a recoverable event

▪ Programming errors are not recoverable because you can’t tell where they came from

▪ Resource exhaustion (i.e. out-of-memory)

▪ I/O failure

▪ Validating external data

▪ Cancellation

▪ Implementation and representation limits

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Errors tend to happen at a low level

main

operator
new

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Errors tend to happen at a low level

main

operator
new

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Key Points

▪ Errors tend to occur at a low-level

▪ A significant amount of code may be in the path from an error to the point where it can be handled

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Preconditions

▪ When preconditions are not satisfied:

▪ An operation may lead to undefined behavior

▪ The result may be unspecified and may violate class invariants

▪ It may lead to program termination

 That’s a bug!

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Possible Effects of Precondition Violation

Undefined Behavior

Unde!ned Behavior

Unspeci!ed

corrupt
memory

data
race

crash

corrupt
value

infinite
loop

anything

terminate

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Safety

▪ An operation is safe if it cannot lead to undefined behavior

▪ Directly or indirectly

▪ Even if the operation preconditions are violated

▪ An unsafe operation may lead to undefined behavior if preconditions are violated

▪ Either directly or during subsequent operations, safe or not

▪ We refer to an operation that terminates on a precondition violation or has no preconditions, as
strongly safe

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Safety

▪ Safety is about incorrect code and the scope of damage it may cause

▪ Errors are about correct code and recoverable situations

▪ Safety is a transitive property

▪ Correctness is not transitive

▪ Strong safety is not transitive

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

What is valid?

int* p{nullptr};
{
 int x{0};
 p = &x;
}

▪ p is valid and dereferencable

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

What is valid?

int* p{nullptr};
{
 int x{0};
 p = &x;
 ++p;
}

▪ p is valid but not dereferencable

▪ *p is undefined behavior

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

What is valid?

int* p{nullptr};
{
 int x{0};
 p = &x;
 ++p;
}
// p

▪ p is invalid, p may be assigned-to, or destructed

▪ *p is undefined behavior

▪ all other operations, including copy and comparisons, are implementation-defined and may trap

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

What is valid?

int* p{nullptr};
{
 int x{0};
 p = &x;
 ++p;
}
p = nullptr;

▪ p is valid but not dereferencable

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Exception-Safety in Generic Components
Lessons Learned from Specifying Exception-Safety

for the C++ Standard Library

David Abrahams

Dragon Systems
David Abrahams@dragonsys.com

Abstract. This paper represents the knowledge accumulated in response
to a real-world need: that the C++ Standard Template Library exhibit
useful and well-defined interactions with exceptions, the error-handling
mechanism built-in to the core C++ language. It explores the meaning of
exception-safety, reveals surprising myths about exceptions and generic-
ity, describes valuable tools for reasoning about program correctness, and
outlines an automated testing procedure for verifying exception-safety.

Keywords: exception-safety, exceptions, STL, C++

1 What Is Exception-Safety?

Informally, exception-safety in a component means that it exhibits reasonable
behavior when an exception is thrown during its execution. For most people,
the term “reasonable” includes all the usual expectations for error-handling:
that resources should not be leaked, and that the program should remain in a
well-defined state so that execution can continue. For most components, it also
includes the expectation that when an error is encountered, it is reported to the
caller.

More formally, we can describe a component as minimally exception-safe
if, when exceptions are thrown from within that component, its invariants are
intact. Later on we’ll see that at least three different levels of exception-safety
can be usefully distinguished. These distinctions can help us to describe and
reason about the behavior of large systems.

In a generic component, we usually have an additional expectation of excep-
tion-neutrality, which means that exceptions thrown by a component’s type pa-
rameters should be propagated, unchanged, to the component’s caller.

2 Myths and Superstitions

Exception-safety seems straightforward so far: it doesn’t constitute anything
more than we’d expect from code using more traditional error-handling tech-
niques. It might be worthwhile, however, to examine the term from a psycholog-
ical viewpoint. Nobody ever spoke of “error-safety” before C++ had exceptions.

M. Jazayeri, R. Loos, D. Musser (Eds.): Generic Programming ’98, LNCS 1766, pp. 69–79, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

1998

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Abstract

“This paper represents the knowledge accumulated in response
to a real-world need: that the C++ Standard Template Library

exhibit useful and well-defined interactions with exceptions, the
error-handling mechanism built-in to the core C++ language. It

explores the meaning of exception-safety, reveals surprising
myths about exceptions and genericity, describes valuable tools

for reasoning about program correctness, and outlines an
automated testing procedure for verifying exception-safety.”

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Myths

“It's almost as though exceptions are viewed as a mysterious
attack on otherwise correct code, from which we must protect

ourselves. Needless to say, this doesn't lead to a healthy
relationship with error handling!”

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Guarantees

▪ Basic exception guarantee

▪ Invariants hold

▪ The values of objects being modified are otherwise unspecified

▪ Strong exception guarantee

▪ The state is restored to the state prior to the failing operation

▪ Invariants hold by extension

▪ No exception guarantee

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Fix mutating state when propagating an exception

▪ The exception guarantees are about what happens to mutable state

▪ Operations that do not mutate state can propagate errors directly

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Class Invariants & Error Propagation

▪ The guarantees say we need to consider:

▪ Operations where invariants are temporarily broken

▪ Only consider member functions that modify the object

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

▪ Consider
operator=
assign
reserve
shrink_to_fit
clear
insert
erase
push_back
emplace_back
pop_back
resize

vector example

▪ Ignore
constructors
get_allocator
at, operator[]
front
back
data
begin, end
empty
size
max_size
capacity
comparison operators
destructor

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

vector example

▪ We also don’t have to worry about non-basis operation

void resize(size_type sz, const T& c) {
 if (sz < size()) {
 erase(begin() + sz, end());
 } else {

 T t{c};
 reserve(sz);
 for (size_type f = 0, l = size() - sz; f != l; ++f) {
 push_back(t);
 }
 }
}

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Fix invariants when propagating an exception

▪ Invariants should only be broken inside member functions with private access

▪ Keep your basis small to narrow the impact of exceptions

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Example

template <class T, class U>
class zip_vector {
 // invariant: _v0.size() == _v1.size()
 vector<T> _v0;
 vector<U> _v1;
public:
 void push_back(T&& x, U&& y) {
 _v0.push_back(move(x));
 _v1.push_back(move(y)); // what if this throws?
 }
};

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Example

template <class T, class U>
class zip_vector {
 // invariant: _v0.size() == _v1.size()
 vector<T> _v0;
 vector<U> _v1;
public:
 void push_back(T&& x, U&& y) {
 _v0.push_back(move(x));
 try {
 _v1.push_back(move(y));
 } catch(...) {
 _v0.pop_back();
 throw;
 }
 }
};

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Postconditions

▪ A Postcondition is an assertion that must be true just after an operation

▪ Unless there is an error

▪ Then invariants are satisfied but the state is otherwise unspecified

▪ The basic guarantee falls out of all the documentation of your system

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Safety and Exception Guarantees

▪ The basic and strong exception guarantees are statements about correctness

▪ They are not transitive properties

▪ “It is ‘safe’ in the sense that it is not allowed to crash, but its output may be unpredictable.”
- David Abrahams regarding the basic guarantee

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

The Other Way Around

▪ Top-down vs bottom-up design

▪ In Generic Programming, lifting is finding commonalities bottom-up across component

▪ The other way around is to find common requirements of callers and common models

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Requirements

▪ Generalization of preconditions to also include

▪ Operations & semantics

▪ Dependent types

▪ In non-generic code, these requirements exist but are implied by the type

▪ Concepts allow us to specify type requirements

▪ But are still missing value preconditions

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Guarantees

▪ Generalization of postconditions

▪ May be conditionalized

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Example

▪ sort requires that value_type(iterator) is movable

▪ basic_string<T> guarantees it is movable

▪ therefore an array<string> is sortable

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Stopping Error Propagation

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Stopping Error Propagation

▪ The operation must satisfy its postconditions

▪ Or terminate

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Abort

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Report & Terminate

▪ Program cannot satisfy postconditions

▪ Requirements

▪ None

▪ Appropriate for failure during initialization

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Abort is Likely to Happen Near Main

abort

operator
new

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Retry

▪ Retry the operation using the same, or a different, approach

▪ Successful retry will satisfy postconditions

▪ Or, resume error propagation

▪ Requirements

▪ Discard incomplete work

▪ Appropriate for some I/O, memory cache

▪ Best of done close to point of failure

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Retry is Best Handled Near the point of Failure

main

operator
new

retry

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Ignore

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Report & Continue

▪ Requirements

▪ Discard incomplete work

▪ Often implemented as transactional operations

▪ Strong exception guarantee

▪ Appropriate for sequenced or optional operations

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Retry is Best Handled Near thePpoint of Failure

abort or
ignore

operator
new

retry

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Discard Incomplete Work

▪ “The options for recovery, in this case, are limited: either destruction or resetting the component to
some known state before further use.”
- Dave Abrahams regarding basic exception guarantee

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Requirements of Exceptions

▪ What do we mean by “discard partial work”?

▪ An object which is being mutated when an exception is thrown must leave the object in a state

▪ within the domain of destruction

▪ within the domain of the left-hand side of assignment

▪ The object should also be in the domain of any operation which does not read the object

▪ i.e. clear()

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Requirements of Exceptions

▪ The exception guarantees are not requirements

▪ The implied requirement is “satisfies class invariants”

▪ But that doesn’t actually tell you anything unless there is a requirement that some operations
have no preconditions

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Invariants?

▪ We’ll call the class invariants in the absence of exceptions, the desired invariants

▪ The weaker invariant of only destructible and assignable-to is invalid

▪ We can, trivially, weaken class invariants to include this state

▪ invalid() || desired_invariants()

▪ And add the precondition for all the other operations

▪ valid() && …

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Why invalid?

▪ Destructible and assignable-to are transitive

▪ To destruct an object, destruct all the parts

▪ To assign an object, assign all the parts

▪ If we define the class invariants and preconditions of its operations to include invalid

▪ Without doing anything else in code to account for exceptions

▪ A class using “= default” for destruction and assignment can be exception correct

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Other Cases Simplified

▪ Ensuring destructible and assignable-to in cases where the default implementations are insufficient
is often simpler than reasoning about the desired invariants

▪ Parts can be packaged to allow default definitions

▪ i.e. unique_ptr<T> vs T*

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Relationship to Move

▪ Any function operation of the form x = f(x) can be expressed as a mutating operation a(x).

▪ It can also be expressed as a consuming operation x = g(move(x))

▪ If g() throws an exception, x is in a moved-from state

▪ The required postcondition after an error are identical to those of a moved-from object

▪ See P2345

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Class Invariants & Postconditions

▪ A class invariant is a postcondition

▪ A postcondition is an assertion that must be true just after an operation

▪ Unless there is an error

▪ Then the result may be invalid

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Example

template <class T, class U>
class zip_vector {
 // invariant: invalid() || (_v0.size() == _v1.size())
 vector<T> _v0;
 vector<U> _v1;
public:
 // precondition: valid()
 void push_back(T&& x, U&& y) {
 _v0.push_back(move(x));
 _v1.push_back(move(y));
 }
};

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Example

template <class T, class U>
class zip_vector {
 // invariant: _v0.size() == _v1.size()
 // may be invalid by exception

 vector<T> _v0;
 vector<U> _v1;
public:
 void push_back(T&& x, U&& y) {
 _v0.push_back(move(x));
 _v1.push_back(move(y));
 }
};

Correct Exception Handling has
Zero Impact on Most Code

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Disadvantage

▪ Stronger preconditions may result in unsafe operations

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Addendum 1: What about shared state?

▪ Correct mutation requires exclusivity

▪ Everything within the program is part of the whole program

▪ You must understand the implicit structure as a whole

▪ The scope of which is somewhere between the calling scope and the program as a whole

▪ You cannot reason about it locally

▪ By catching close to main() you may be under the implicit structure

▪ Or be able to identify the root(s)

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Addendum 2: The Problems with C++ Exceptions

▪ Exceptions are the default

▪ Operator new throws and is replaceable

▪ Reliance on RTTI and inheritance

▪ No guarantee of noexcept move for standard components

▪ ABI leakage

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

About the artist

Dan Zucco

London-based 3D art and motion director Dan Zucco
creates repeating 2D patterns and brings them to life
as 3D animated loops. Inspired by architecture, music,
modern art, and generative design, he often starts in
Adobe Illustrator and builds his animations using
Adobe After Effects and Cinema 4D. Zucco’s objective
for this piece was to create a geometric design that
felt like it could have an infinite number of
arrangements.

Made with

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

