
Artwork by UV Zhu / China

Language: Fragmentation of
Machine Architecture
Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

Mario Wolczko | Oracle Labs

1

©2021 Adobe. All Rights Reserved.

Desktop Applications – Recent History

• Macintosh

• 68K, single-core

• PPC, single-core

• Intel, multi-core, SIMD, OpenGL/CL

• Windows

• Intel, single-core

• Intel, multi-core, SIMD, OpenGL/CL

2

©2021 Adobe. All Rights Reserved.

Two Key Events

• 2005 we hit the physical limits of Moore’s Law under current technology

• 2007 the iPhone is introduced

3

©2021 Adobe. All Rights Reserved.

2009 Projected Processor Characteristics

4

©2021 Adobe. All Rights Reserved.

How are we doing?

5

After Moore’s Law: How Will We Know How Much Faster Computers Can Go?
Scott Fulton, Data Center Knowledge, Dec 21, 2020

https://www.datacenterknowledge.com/supercomputers/after-moore-s-law-how-will-we-know-how-much-faster-computers-can-go

© 2014 Adobe Systems Incorporated. All Rights Reserved. 6

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

6

0 750 1500 2250 3000

GPU Vectorization Multi-thread Scalar (GFlops)

Intrinsics
Auto-vectorization

OpenCL Straight C++

TBB
GCD

OpenMP
C++11

OpenGL
OpenCL
CUDA

Direct Compute
C++ AMP
DirectX

©2021 Adobe. All Rights Reserved.

Platform Expansion

• Mobile

• iPhone fundamentally changed mobile devices

• Web

• Content Ubiquity is expected

• Tablets

• Larger “phones” succeeded where smaller desktops failed

7

©2021 Adobe. All Rights Reserved.

Platform Expansion

• In 2012 I gave an internal presentation at Adobe on content ubiquity

• Broadband was available to th majority of the popultion in the developed countries

• Soon will be true worldwide

• Noted capabilities of mobile devices

• Increased by > 8x

• Because content ubiquity is becoming a base expectation, not providing it will kill a product

8

©2021 Adobe. All Rights Reserved.

Platform Expansion

9

©2021 Adobe. All Rights Reserved.

Platform Fragmentation

• macOS

• Win32 & UXP

• iOS and iPadOS

• Android

• Linux (server)

• W3C

10

©2021 Adobe. All Rights Reserved.

Instruction Set Fragmentation

• Intel (AVX SIMD)

• ARM (Neon SIMD)

• WASM (WASM SIMD)

• Currently 32 bit address space

11

©2021 Adobe. All Rights Reserved.

GPU Platform Fragmentation

• Metal (Apple)

• DX12 (Microsoft)

• Vulcan (Open Standard, Android, Linux)

• CUDA (NVIDIA)

• WebGPU (Browsers)

12

©2021 Adobe. All Rights Reserved.

Amdahl’s Law

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Processors

P
e
rf
o
rm
a
n
c
e

P=100%

P=90%

P=80%
…

©2021 Adobe. All Rights Reserved.

Hardware to Fight Amdahl’s Law

• NUMA

• DMA to discrete GPU

• Unified Memory (Apple’s M1 chips)

• “The unified memory requires a very different approach to that on Windows with discrete GPUs.”

• Optane?

14

©2021 Adobe. All Rights Reserved.

Hardware to Manage Power

• Thermal Throttling

• Heterogeneous Cores

• Discrete / Integrated GPU Switching

15

©2021 Adobe. All Rights Reserved.

Languages Are Not Keeping Up

• We are struggling to find models to reason about concurrent systems

• CSP, Actors, Functional, …

• Safer languages have higher overhead

• But unsafe languages are harder to get correct

• My estimate is we are leaving times performance on the table23 to 25

16

©2021 Adobe. All Rights Reserved.

Operation Costs are Not Reflected In Code

17

©2021 Adobe. All Rights Reserved.

What is wrong with C++

• C++ allow us to control memory layout and sharing

• Compiler is blind to sharing - aliasing + mutation kills optimization

• Developer is also blind to sharing making code difficult to reason about

• Lack of safety makes it very difficult especially in the presence of concurrency for new developers

• Basic library primitives for concurrency (threads) are very expensive

• Performance penalty (Stepanov Abstraction Penalty) to wrap basic arithmetic types

• i.e. treat a uint8_t as a value from 0.0 - 1.0

• Code the same algorithm with different function names or pay the tax

18

©2021 Adobe. All Rights Reserved.

C++

• Despite the limitations and drawbacks, C++ is still performance king*

• Adobe has a massive investment in C++ code bases

• Can C++ be improved enough?

• The pace of C++ advancement is still rapid

• If another language proved to be better, what does the migration look like?

19

©2021 Adobe. All Rights Reserved.

Possible Future?

• In 2007 I gave a Google TechTalk, A Possible Future of Software Development

• Observation - Most developers cannot write a correct binary search (still true)

• An argument for developing generic libraries and concepts

• Conjecture - All problems of scale become a network problem

• An argument for developing declarative systems

• BNF, SQL, HTML, Spreadsheets

• In imperative languages a single relationship becomes multiple functions

20

© 2021 Adobe. All Rights Reserved.

Imperative Solution to Mini-Image Size

21

© 2021 Adobe. All Rights Reserved.

Declarative Solution using the Property Model Library

sheet mini_image_size
{
 input:
	 	 original_width	 : 5 * 300;
	 	 original_height	 : 7 * 300;
 interface:
	 	 constrain		 	 : true;
	 	 width_pixels 		 : original_width	 	 <== round(width_pixels);
	 	 height_pixels	 : original_height		 <== round(height_pixels);
	 	 width_percent;
	 	 height_percent;
 logic:
	 	 relate {
	 	 	 width_pixels		 <== round(width_percent * original_width / 100);
	 	 	 width_percent	 <== width_pixels * 100 / original_width;
	 	 }
	 	 relate {
	 	 	 height_pixels	 <== round(height_percent * original_height / 100);
	 	 	 height_percent	 <== height_pixels * 100 / original_height;
	 	 }
	 	 when (constrain) relate {
	 	 	 width_percent	 <== height_percent;
	 	 	 height_percent	 <== width_percent;
	 	 }
 output:
	 	 result <== { height: height_pixels, width: width_pixels };
}

22

©2021 Adobe. All Rights Reserved.

Where do programming languages need to go

• Major shift from developer productivity to code efficiency

• Locality, locality, locality

• Data oriented, array based

• Value semantics with safe mutability

• Reference semantics and garbage collectors are problematic

• Computation kernels

• Supporting SIMD and GPU code generation

• See Halide language

23

©2021 Adobe. All Rights Reserved.

Example of Halide

Func blur_3x3(Func input) {
 Func blur_x, blur_y;
 Var x, y, xi, yi;

 // The algorithm - no storage or order
 blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
 blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

 // The schedule - defines order, locality; implies storage
 blur_y.tile(x, y, xi, yi, 256, 32)
 .vectorize(xi, 8).parallel(y);
 blur_x.compute_at(blur_y, x).vectorize(x, 8);

 return blur_y;
}

24

©2021 Adobe. All Rights Reserved.

Possible?

blur_3x3 = [2] => (([-1, 0] + [0, 0] + [1, 0]) / 3) |
 (([0, -1] + [0, 0] + [0, 1]) / 3);

25

©2021 Adobe. All Rights Reserved.

Where do programming languages need to go

• Switch emphasis from safety to correctness

• Higher level semantics allows for more optimization

• Graph based

• Ability to control flow between software components

• Shift from functions to relationships

26

©2021 Adobe. All Rights Reserved.

Machine Learning - the wild card

• CoreML (Apple)

• DirectML (Microsoft)

• Neural Engine (Apple)

• TPU (Google)

27

© 2021 Adobe. All Rights Reserved.

About the artist

UV Zhu

With an eye for the abstract, Chinese artist UV Zhu
remixes patterns, textures, and colors to explore the
future of fashion. Using Adobe Photoshop, Adobe
Illustrator, and Maxon Cinema 4D, he blends surreal
settings, organic shapes, and even favorite foods to
challenge convention. Inspired by his travels—around
the Internet and in real life—for this piece, UV
fantasized about characters moving through an
imaginary world, the things they might do, and what
they might wear. The result is a bright, colorful
expression of joy and positivity.

Made with

28

© 2021 Adobe. All Rights Reserved.

Artwork by UV Zhu / China

29

