
© 2017 Adobe Systems Incorporated. All Rights Reserved.

Better Code: Human Interface
Sean Parent | Principal Scientist

© 2017 Adobe Systems Incorporated. All Rights Reserved

Topics for Discussion

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Better Code: Design and Ethics
Sean Parent | Principal Scientist

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Better Code: Futures are not Monads
Sean Parent | Principal Scientist

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Better Code: Futures are not Monads
Sean Parent | Principal Scientist

just

^

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Faster Bresenham’s Algorithm
Sean Parent | Principal Scientist

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Old Guy Reminiscing
Sean Parent | Principal Scientist

© 2017 Adobe Systems Incorporated. All Rights Reserved

Today’s Talk

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Better Code: Human Interface
Sean Parent | Principal Scientist

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationship Between HI and Code

“The purpose of a human interface is not to hide what the code
does but to accurately convey what the code does.”

– Darin Adler (personal conversation, best of my recollection)

 9

© 2017 Adobe Systems Incorporated. All Rights Reserved

Goal: Don’t Lie

© 2017 Adobe Systems Incorporated. All Rights Reserved

Demo
Photoshop

© 2017 Adobe Systems Incorporated. All Rights Reserved. 12

© 2017 Adobe Systems Incorporated. All Rights Reserved. 12

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Taxonomy of Everything

 13

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Taxonomy of Everything

▪ Objects

 13

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Taxonomy of Everything

▪ Objects
▪ Properties

 13

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Taxonomy of Everything

▪ Collections
▪ Objects
▪ Properties

 14

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Taxonomy of Everything

▪ Collections
▪ Objects
▪ Properties

▪ Operations

 14

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Taxonomy of Everything

▪ Collections
▪ Objects
▪ Properties

▪ Operations
▪ Relationships

 14

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Model View Controller

 15

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Model View Controller

“MVC consists of three kinds of objects. The Model is the
application object, the View is its screen presentation, and the

Controller defines the way the user interface reacts to user input.”

– Design Patterns: Elements of Reusable Object-Oriented Software,
section 1.2

 15

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Model-View-Controller

 16

Controller

Model

View

© 2017 Adobe Systems Incorporated. All Rights Reserved.

How did MVC get so F’ed up?

 17

© 2017 Adobe Systems Incorporated. All Rights Reserved.

How did MVC get so F’ed up?

▪ http://stlab.cc/tips/about-mvc.html

 17

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observable Models

▪ Application model is Objects + Operations + Relationships

 18

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observable Models

▪ Application model is Objects + Operations + Relationships
▪ Controllers bind to operations

 18

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observable Models

▪ Application model is Objects + Operations + Relationships
▪ Controllers bind to operations
▪ Trivial controller binds to set property

 18

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observable Models

▪ Application model is Objects + Operations + Relationships
▪ Controllers bind to operations
▪ Trivial controller binds to set property
▪ Views bind to objects and their properties

 18

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observable Models

▪ Application model is Objects + Operations + Relationships
▪ Controllers bind to operations
▪ Trivial controller binds to set property
▪ Views bind to objects and their properties

▪ A view/controller is a control or widget

 18

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Objects

▪ Operations
▪ Construct
▪ Copy
▪ Move
▪ Delete

▪ Properties
▪ Location
▪ Size
▪ Name (common)

 19

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Objects

▪ Operations
▪ Construct
▪ Copy
▪ Move
▪ Delete

▪ Properties
▪ Location
▪ Size
▪ Name (common)

 19

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Objects

▪ We associate visual constructs, names, icons, and behaviors with semantics
▪ In programs operations like construct have specific semantics
▪ In the HI we associate semantics with controls

 20

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Objects

 21

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Objects

 22

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Collections

▪ Operations
▪ Insert
▪ Remove

▪ Properties
▪ Count

▪ Relationships
▪ Whole/Part

 23

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Collections

▪ Large collections pose a problem
▪ How to observe the collection interactively, allowing the user to arrange, filter, and browse

 24

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 25

4
13
12
7
9
5
15
14
2
11
6
16
10
1
8
3

sf

sl

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 26

sf

sl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 27

sf

sl

X
X
X
X
X
6
7
8
9
X
X
X
X
X
X
X

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 28

4
13
12
7
9
5
15
14
2
11
6
16
10
1
8
3

f

l

sf

sl

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 29

4
13
12
7
9
5
15
14
2
11
6
16
10
1
8
3

f

l

sf

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 29

4
13
12
7
9
5
15
14
2
11
6
16
10
1
8
3

f

l

sf
 nth_element(f, sf, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 30

f

l

sf

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

 nth_element(f, sf, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 31

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sf
 nth_element(f, sf, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 31

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sf

≤ *sf

 nth_element(f, sf, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 31

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sf

≤ *sf

≥ *sf

 nth_element(f, sf, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 32

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sl

sf
 nth_element(f, sf, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 33

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sl

sf
 nth_element(f, sf, l);
 ++sf;

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 33

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sl

sf nth_element(f, sf, l);
 ++sf;

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 34

2
1
3
4
5
6
7
14
12
15
9
16
10
13
8
11

f

l

sl

sf nth_element(f, sf, l);
 ++sf;

 partial_sort(sf, sl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 35

f

l

sl

sf

2
1
3
4
5
6
7
8
9
15
14
16
12
13
10
11

 nth_element(f, sf, l);
 ++sf;

 partial_sort(sf, sl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 36

f

l

sl

sf

2
1
3
4
5
6
7
8
9
15
14
16
12
13
10
11

 nth_element(f, sf, l);
 ++sf;

 partial_sort(sf, sl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 37

 if (sf == sl) return;

 nth_element(f, sf, l);
 ++sf;

 partial_sort(sf, sl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 38

 if (sf == sl) return;
 if (sf != f) {
 nth_element(f, sf, l);
 ++sf;
 }
 partial_sort(sf, sl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 39

template <typename I> // I models RandomAccessIterator
void sort_subrange(I f, I l, I sf, I sl)
{
 if (sf == sl) return;
 if (sf != f) {
 nth_element(f, sf, l);
 ++sf;
 }
 partial_sort(sf, sl, l);
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 40

f

l

sl

sf

sl

4
13
12
7
9
5
15
14
2
11
6
16
10
1
8
3

 sort_subrange(f, l, sf, sl);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 41

f

l

sl

2
1
3
4
5
6
7
8
9
15
14
16
12
13
10
11

sf

sl

 sort_subrange(f, l, sf, sl);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 41

f

l

sl

2
1
3
4
5
6
7
8
9
15
14
16
12
13
10
11

sf

sl

nl

 sort_subrange(f, l, sf, sl);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 42

f

l

sl

2
1
3
4
5
6
7
8
9
15
14
16
12
13
10
11

sf

nl

 sort_subrange(f, l, sf, sl);
 partial_sort(sl, nl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Observing Collections

 43

f

l

sl

sf

nl

2
1
3
4
5
6
7
8
9
10
11
12
16
15
14
13

 sort_subrange(f, l, sf, sl);
 partial_sort(sl, nl, l);

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Operations

▪ Operations act on one or more objects
▪ Additional arguments to the operation are bound as properties
▪ Operations are represented by buttons, menu items, gestures, tools, direct manipulation
▪ Subject or target of an operation is identified by
▪ Selections
▪ Direct Manipulation

 44

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Selections

▪ Selecting objects within the hierarchy specifies one or more target paths
▪ Application->Document->Object

 45

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Selections

▪ Selecting objects within the hierarchy specifies one or more target paths
▪ Application->Document->Object

 45

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Selections

▪ Interval sets are a good data structure to represent selections

 46

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 47

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 47

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 48

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 48

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 49

p

l

 stable_partition(p, l, s)

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 49

p

l

 stable_partition(p, l, s)

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 50

p

f

 stable_partition(f, p, not1(s))

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 50

p

f

 stable_partition(f, p, not1(s))

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 51

p

l

f

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 51

p

l

f

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 52

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 53

 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 54

template <typename I, // I models BidirectionalIterator
 typename S> // S models UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 55

p

l

f template <typename I, // I models BidirectionalIterator
 typename S> // S models UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Gather

 55

template <typename I, // I models BidirectionalIterator
 typename S> // S models UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 56

l

f

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 56

l

f

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 57

l

f

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 58

m

l

f

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 58

m

l

f

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 58

m

l

f

 stable_partition(f, m, p)

 stable_partition(m, l, p)

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 59

m

 stable_partition(f, m, p)

 stable_partition(m, l, p)

Stable Partition

 59

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 59

m

 stable_partition(f, m, p)

 stable_partition(m, l, p)

Stable Partition

 59

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 59

m

 rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

Stable Partition

 59

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 60

 rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

 60

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 60

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

 60

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 61

r

f
r

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 61

r

f
r

 if (n == 1) return f + p(*f);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 62

l

f

 if (n == 1) return f + p(*f);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 62

l

f
template <typename I,
 typename P>
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 62

l

f
template <typename I,
 typename P>
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 62

l

f
template <typename I,
 typename P>
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 63

l

f
template <typename I,
 typename P>
auto stable_partition(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(*f);

 auto m = f + (n / 2);

 return rotate(stable_partition(f, m, p),
 m,
 stable_partition(m, l, p));
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

 63

l

f
template <typename I,
 typename P>
auto stable_partition_position(I f, I l, P p) -> I
{
 auto n = l - f;
 if (n == 0) return f;
 if (n == 1) return f + p(f);

 auto m = f + (n / 2);

 return rotate(stable_partition_position(f, m, p),
 m,
 stable_partition_position(m, l, p));
}

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Using gather_position

interval_set<I> selection;

//...

gather_position(f, l, p, [&](auto p) {
 return contains(selection, p);
});

 64

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Selections

▪ Multi-select is only sporadically implemented
▪ Always inconsistently

 65

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Selections

 66

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

One Way to Select Many
�

Jaakko Järvi1 and Sean Parent2

1 Texas A&M University
College Station, TX, USA
jarvi@cse.tamu.edu

2 Adobe Systems Inc.
San Jose, CA, USA
sparent@adobe.com

Abstract

Selecting items from a collection is one of the most common tasks users perform with graphical
user interfaces. Practically every application supports this task with a selection feature di�erent
from that of any other application. Defects are common, especially in manipulating selections of
non-adjacent elements, and flexible selection features are often missing when they would clearly
be useful. As a consequence, user e�ort is wasted. The loss of productivity is experienced in small
doses, but all computer users are impacted. The undesirable state of support for multi-element
selection prevails because the same selection features are redesigned and reimplemented repeat-
edly. This article seeks to establish common abstractions for multi-selection. It gives generic
but precise meanings to selection operations and makes multi-selection reusable; a JavaScript
implementation is described. Application vendors benefit because of reduced development e�ort.
Users benefit because correct and consistent multi-selection becomes available in more contexts.

1998 ACM Subject Classification D.2.11 Software Architectures: Domain-specific architectures;
D.2.13 Reusable Software: Reusable libraries

Keywords and phrases User interfaces, Multi-selection, JavaScript

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Many, perhaps most, interactive software applications present their users one or more
collections of elements in the form of lists, trees, grids, or otherwise arranged views, of which
a user can select one or more elements. Examples include selecting files and folders in a
file explorer; mail folders or mail messages in a mail client; music tracks in a media player;
thumbnail images in a photograph organizer; “to do” list items, hours, days, weeks, or months
in a calendar application; pages organized into “tabs” in a web browser; and electronic books
or videos on a digital library or store. These tasks are typical daily activities for many
computer users—we select elements from collections dozens of times per day.

Regardless of which set of modern applications a user chooses for mail, music, photos,
calendar, web browsing, books, and videos, the features for selecting elements are likely to
di�er across applications—even within a single application the selection features for di�erent
collections, such as the list of mail folders and list of mail messages, are likely to be di�erent.

The di�erences could presumably stem from optimizing the feature for the best possible
user experience in di�erent kinds of selection contexts, but this is not the case. The selection

�
This work was supported in part by NSF grants CCF-0845861 and CCF-1320092.

© Jaakko Järvi and Sean Parent ;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

▪ A relationship is the way two entities are connected
▪ Connective tissue between objects and properties
▪ A structure is formed by connected relationships
▪ Architecture is the art and science of designed structures

 67

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

▪ A relationship is the way two entities are connected
▪ Connective tissue between objects and properties
▪ A structure is formed by connected relationships
▪ Architecture is the art and science of designed structures

▪ A relationship implies a corresponding predicate that tests if a pair exists in the relation

 67

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

▪ A relationship is the way two entities are connected
▪ Connective tissue between objects and properties
▪ A structure is formed by connected relationships
▪ Architecture is the art and science of designed structures

▪ A relationship implies a corresponding predicate that tests if a pair exists in the relation

▪ Within an HI relationships can be challenging to represent

 67

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 68

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1;

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

num_toilets >= 1

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

num_toilets >= 1 num_toilets = 1;

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

num_toilets >= 1 num_toilets = 1; ✅

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

num_toilets >= 1 num_toilets = 1; ✅

privacy >= 0

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

num_toilets >= 1 num_toilets = 1; ✅

privacy >= 0 privacy = 0;

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 69

Requirement Design

num_showers >= 1 num_showers = 1; ✅

num_toilets >= 1 num_toilets = 1; ✅

privacy >= 0 privacy = 0; ✅

© 2017 Adobe Systems Incorporated. All Rights Reserved.

“Simple” Relationship

a ⇒ b
(a implies b)

 70

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Implies (examples from the clang manual)

▪ “-ggdb, -glldb, -gsce … Each of these options implies -g.”
▪ “-f[no-]diagnostics-show-hotness … This option is implied when -fsave-optimization-record is used.”
▪ “-M, --dependencies … Like -MD, but also implies -E”
▪ “-MM, --user-dependencies … Like -MMD, but also implies -E”
▪ “-cl-unsafe-math-optimizations … Also implies -cl-no-signed-zeros and -cl-mad-enable.”

 71

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Unconstrained

void operation(bool a, bool b) {
 b = a || b; // a implies b
 //...
}

 72

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Unconstrained

void operation(bool a, bool b) {
 b = a || b; // a implies b
 //...
}

 72

© 2017 Adobe Systems Incorporated. All Rights Reserved.

First Attempt

- (IBAction)aChanged {
 if (_aSwitch.on) _bSwitch.on = true;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 73

© 2017 Adobe Systems Incorporated. All Rights Reserved.

First Attempt

- (IBAction)aChanged {
 if (_aSwitch.on) _bSwitch.on = true;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 73

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Goal

 74

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Goal

Use strong preconditions

 74

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Goal

Use strong preconditions
and assert them

 74

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Disable

- (IBAction)aChanged {
 _bSwitch.enabled = !_aSwitch.on;
 if (_aSwitch.on) _bSwitch.on = true;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 75

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Disable

- (IBAction)aChanged {
 _bSwitch.enabled = !_aSwitch.on;
 if (_aSwitch.on) _bSwitch.on = true;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 75

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Disable + Memory

- (IBAction)aChanged {
 _bSwitch.enabled = !_aSwitch.on;
 _bSwitch.on = _aSwitch.on || _b;
}

- (IBAction)bChanged {
 _b = _bSwitch.on;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 76

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Disable + Memory

- (IBAction)aChanged {
 _bSwitch.enabled = !_aSwitch.on;
 _bSwitch.on = _aSwitch.on || _b;
}

- (IBAction)bChanged {
 _b = _bSwitch.on;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 76

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Contrapositive

 77

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Contrapositive

¬b ⇒ ¬a

 77

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Contrapositive

¬b ⇒ ¬a
(not b implies not a)

 77

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Contrapositive + Memory

- (IBAction)aChanged {
 _a = _aSwitch.on;
 _bSwitch.on = _a || _b;
}

- (IBAction)bChanged {
 _b = _bSwitch.on;
 _aSwitch.on = _b && _a;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 78

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Contrapositive + Memory

- (IBAction)aChanged {
 _a = _aSwitch.on;
 _bSwitch.on = _a || _b;
}

- (IBAction)bChanged {
 _b = _bSwitch.on;
 _aSwitch.on = _b && _a;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

 78

© 2017 Adobe Systems Incorporated. All Rights Reserved.

- (IBAction)aChanged {
 _bSwitch.on = _aSwitch.on || _bSwitch.on;
}

- (IBAction)bChanged {
 _aSwitch.on = _bSwitch.on && _aSwitch.on;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

Contrapositive

 79

© 2017 Adobe Systems Incorporated. All Rights Reserved.

- (IBAction)aChanged {
 _bSwitch.on = _aSwitch.on || _bSwitch.on;
}

- (IBAction)bChanged {
 _aSwitch.on = _bSwitch.on && _aSwitch.on;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

Contrapositive

 79

© 2017 Adobe Systems Incorporated. All Rights Reserved.

- (IBAction)changed {
 _operation.enabled =
 !_aSwitch.on || _bSwitch.on;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

Unconstrained + Disable Operation

 80

© 2017 Adobe Systems Incorporated. All Rights Reserved.

- (IBAction)changed {
 _operation.enabled =
 !_aSwitch.on || _bSwitch.on;
}

void operation(bool a, bool b) {
 assert(!a || b); // a implies b
 //...
}

Unconstrained + Disable Operation

 80

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Relationships

 81

© 2017 Adobe Systems Incorporated. All Rights Reserved.

What is a good design?

▪ Toggling a control should restore system to original state
▪ Result of a click should be predictable without knowing how current state was achieved
▪ Guided paths are preferred so long as they don’t make navigation more difficult

▪ But there needs to be additional rules to handle conflicts
▪ Rules derived from
▪ Convention
▪ Experience
▪ Studies

 82

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Property Models

▪ Unconstrained
a; b;
▪ Disabled
b <== a || b;
▪ Disabled + Memory
unlink b <== a || b;
▪ Contrapositive + Memory
unlink a; unlink b;
relate {
 b <== a || b;
 a <== b && a;
} 

▪ Contrapositive
relate {
 b <== a || b;
 a <== b && a;
}
▪ Unconstrained + Disable Operation
invariant:
 valid <== !a || b;

 83

© 2017 Adobe Systems Incorporated. All Rights Reserved. 84

Generating Reactive Programs for Graphical User

Interfaces from Multi-way Dataflow Constraint Systems

Gabriel Foust
Texas A&M University, TX, USA

gfoust@cse.tamu.edu

Jaakko Järvi
Texas A&M University, TX, USA

jarvi@cse.tamu.edu

Sean Parent
Adobe Systems, Inc.
sparent@adobe.com

Abstract

For a GUI to remain responsive, it must be able to schedule lengthy
tasks to be executed asynchronously. In the traditional approach to
GUI implementation—writing functions to handle individual user
events—asynchronous programming easily leads to defects. En-
suring that all data dependencies are respected is di�cult when
new events arrive while prior events are still being handled. Re-
active programming techniques, gaining popularity in GUI pro-
gramming, help since they make data dependencies explicit and
enforce them automatically as variables’ values change. However,
data dependencies in GUIs usually change along with its state. Re-
active programming must therefore describe a GUI as a collection
of many reactive programs, whose interaction the programmer must
explicitly coordinate. This paper presents a declarative approach
for GUI programming that relieves the programmer from coordi-
nating asynchronous computations. The approach is based on our
prior work on “property models”, where GUI state is maintained
by a dataflow constraint system. A property model responds to
user events by atomically constructing new data dependencies and
scheduling asynchronous computations to enforce those dependen-
cies. In essence, a property model dynamically generates a reac-
tive program, adding to it as new events occur. The approach gives
the following guarantee: the same sequence of events produces the
same results, regardless of the timing of those events.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures

General Terms Design, Theory

Keywords Dataflow constraint systems, Graphical user interfaces,
asynchronous programming

1. Introduction

For a Graphical User Interface (GUI) to remain responsive while
performing lengthy tasks, e.g., image processing or remote server
communication, it must support asynchronous execution. That is, it
must be able to begin new tasks even though not all prior tasks have
completed. Asynchronous execution can take the form of executing
an algorithm on a separate thread, performing other work while
waiting on a server response, or even using time-sharing techniques
to make progress on multiple tasks at once.

(a) An auto-complete text box.

query

index menu

value

(b) The data dependencies.

Figure 1: An example of an auto-complete text box, and a diagram
showing the data dependencies involved in its implementation.

Asynchronous execution is complicated by data dependencies
between tasks. Such dependencies mean that the execution of one
task may a↵ect the outcome of another; therefore running tasks in
di↵erent orders or in parallel may yield di↵erent outcomes. The
programmer must carefully guard against execution schedules that
could produce incorrect results. This is not easy in the event-driven
GUI programming paradigm, where data dependencies implicitly
arise whenever multiple event handlers share variables.

By way of illustration, we examine one common GUI element:
the auto-complete text box. This element helps the user produce
a string to be used as input by some part of the application. Text
entered by the user becomes the input string, but is also used as
a parameter in an asynchronous search for related input strings.
Typically the search results are listed below the text box as a menu
from which the user, with a mouse or keyboard, may select an
alternate input string. Figure 1a shows an auto-complete text box
being used to select a city as a travel destination.

Figure 1b shows the dependencies that emerge in this seemingly
simple GUI element. Text entered by the user becomes the query
parameter, which determines the menu items. If a menu item is
selected, the index of the selected item and the contents of the
menu determine the input string; if no item is selected, the query
parameter itself becomes the input string. Finally, a change in the
contents of the menu a↵ects the selected index: if the previously
selected city is in the new menu, its new index should be used;
otherwise the index should be reset. We show this dependency with
a dashed line, as it is only in e↵ect when the menu changes.

We claim these dependencies are non-trivial, and that writing
code that enforces them is di�cult using the traditional event-
driven programming model. To test this claim, we performed an
informal survey of six popular commercial travel sites (expedia.
com, orbitz.com, aa.com, united.com, hotels.com, and yahoo.com/
travel) and found that all six contained auto-complete text boxes
exhibiting inconsistent behavior. We define inconsistent behavior
as the same sequence of editing operations producing di↵erent out-
comes. In all cases, inconsistent behavior was triggered by a rapid

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

GPCE’15, October 26–27, 2015, Pittsburgh, PA, USA

c� 2015 ACM. 978-1-4503-3687-1/15/10...$15.00

http://dx.doi.org/10.1145/2814204.2814207

121

Helping Programmers Help Users

John Freeman
Texas A&M University
jfreeman@cse.tamu.edu

Jaakko Järvi
Texas A&M University
jarvi@cse.tamu.edu

Wonseok Kim
Texas A&M University
guruwons@cse.tamu.edu

Mat Marcus
Canyonlands Software Design

mmarcus@emarcus.org

Sean Parent
Adobe Systems, Inc.
sparent@adobe.com

Abstract

User interfaces exhibit a wide range of features that are designed to
assist users. Interaction with one widget may trigger value changes,
disabling, or other behaviors in other widgets. Such automatic be-
havior may be confusing or disruptive to users. Research literature
on user interfaces offers a number of solutions, including interface
features for explaining or controlling these behaviors. To help pro-
grammers help users, the implementation costs of these features
need to be much lower. Ideally, they could be generated for “free.”
This paper shows how several help and control mechanisms can
be implemented as algorithms and reused across interfaces, mak-
ing the cost of their adoption negligible. Specifically, we describe
generic help mechanisms for visualizing data flow and explaining
command deactivation, and a mechanism for controlling the flow of
data. A reusable implementation of these features is enabled by our
property model framework, where the data manipulated through a
user interface is modeled as a constraint system.

Categories and Subject Descriptors H.2.2 [Software Engineer-

ing]: Design Tools and Techniques—user interfaces

General Terms Algorithms

Keywords user interfaces, software reuse, constraint systems,
software architecture

1. Introduction

The dull, run-of-the-mill user interfaces—dialogs, forms, and
such—do not get much attention from the software research com-
munity, but they collectively require a lot of attention from the
programmer community. User interfaces abound, and they are la-
borious to develop and difficult to get correct. As an attempt to
reduce the cost of constructing user interfaces, we have introduced
property models, a declarative approach to programming user in-
terfaces [8, 9]. The long term goal of this work is to reach a point
where most (maybe all) of the functionality that we have come to
expect from a high quality user interface would come from reusable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c� 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

algorithms or components in a software library, parametrized by a
specification of the data manipulated by the user interface. In par-
ticular, we have described reusable implementations for the prop-
agation of values between user interface elements, the enablement
and disablement of user interface widgets, and the activation and
deactivation of widgets that launch commands.

This paper describes our work to direct these advances to the
improvement of user interfaces. One purpose of a user interface is
to provide the user with an easily interpreted view of a conceptual
model for the internal states of the application and the interface
itself. To the extent that the interface fails to do this, there exists
a gulf of evaluation [7]. The gulf of evaluation exacerbates the
cognitive effort required to understand and use an application, and
can lead to user frustration.

This paper shows that with the power of components, genera-
tivity, and reuse we can go beyond merely implementing existing
behavior more economically. If a user interface behavior can be
successfully packaged into a reusable component, then we should
explore more functionality for assisting users and closing the gulf
of evaluation. We should aim for more consistent user interfaces
with less surprising behavior, more explanations of why a user in-
terface behaves the way it does, and more abilities to change the
behavior of a user interface “on the fly” to better serve users’ goals.
In sum, we should aim for more features that help users in their
interactions with an interface.

This paper describes several generic realizations of help and
convenience features that could be provided as standard features
of dialogs and forms. In particular, we focus on (1) visualizing
how data flows in a user interface, (2) providing help messages
for commands that are deactivated, and (3) providing the user with
means to control the direction of the flow of data. We emphasize
that the main contributions of the paper are the algorithms and the
software architecture that enable implementing these features in a
reusable manner, applicable to a large class of user interfaces with
negligible programming effort. The realizations of these algorithms
build on the property models approach, in which the data that a
user interface manipulates and the dependencies within this data are
modeled explicitly as a constraint system. Reusable user interface
algorithms are thus algorithms that inspect and manipulate this
constraint system.

We are at an early stage in our effort. To not overstate our
contribution, we note that we have not conducted user studies, and
we have not applied the proposed tools and algorithms to a large
collection of user interfaces drawn from existing software. The
computer-human interaction (CHI) research community, however,
has devised many help and support features for user interfaces and

177

© 2017 Adobe Systems Incorporated. All Rights Reserved. 85

Algorithms for User Interfaces

Jaakko Järvi
Texas A&M University
jarvi@cse.tamu.edu

Mat Marcus
mmarcus@emarcus.org

Sean Parent
Adobe Systems Inc.
sparent@adobe.com

John Freeman
Texas A&M University
jfreeman@cse.tamu.edu

Jacob Smith
Texas A&M University
jnsmith@cse.tamu.edu

Abstract
User interfaces for modern applications must support a rich set of
interactive features. It is commonplace to find applications with
dependencies between values manipulated by user interface ele-
ments, conditionally enabled controls, and script record-ability and
playback against different documents. A significant fraction of the
application programming effort is devoted to implementing such
functionality, and the resulting code is typically not reusable.

This paper extends our “property models” approach to program-
ming user interfaces. Property models allow a large part of the func-
tionality of a user interface to be implemented in reusable libraries,
reducing application specific code to a set of declarative rules. We
describe how, as a by-product of computations that maintain the
values of user interface elements, property models obtain accurate
information of the currently active dependencies among those ele-
ments. This information enables further expanding the class of user
interface functionality that we can encode as generic algorithms. In
particular, we describe automating the decisions for the enablement
of user interface widgets and activation of command widgets. Fail-
ing to disable or deactivate widgets correctly is a common source
of user-interface defects, which our approach largely removes.

We report on the increased reuse, reduced defect rates, and im-
proved user interface design turnarounds in a commercial software
development effort as a result of adopting our approach.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: User interfaces; D.2.13 [Reusable Software]: Reuse
models

General Terms Algorithms, Design

Keywords Software reuse, Component software, User interfaces,
Declarative specifications, Constraint systems

1. Introduction
The role of a user interface, such as a dialog window, can be
summarized as supporting the user in selecting valid values for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c� 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

a command or function to be executed in a program. In modern
applications this support may mean, for example, computing values
of some user interface elements automatically when values of other
elements change, storing and retrieving default values, capturing
user actions into a replayable script, undo and redo functionality,
disabling user interface elements when their values are irrelevant
for a final result, etc. This list is long—it is no small task for
programmers to implement high-quality user interfaces.

In the prevailing approach to programming graphical user inter-
faces (GUIs), one of many GUI frameworks [6, 17, 31] provides a
selection of widgets as reusable software components, and the pro-
grammer implements a user interface as a composition of widgets
by specifying the interactions between the components. The in-
teractions are typically expressed using imperative object-oriented
code placed in event handlers. Even in user interfaces with rela-
tively simple functionality, interactions between components are
often surprisingly complex. Consequently, the event-handling logic
that expresses the interactions is similarly complex, often scattered
to many locations in the program, and seldom reusable across user
interfaces. It is thus not surprising that user interface code can ac-
count for 30–50% of applications’ code [21, 25], and a dispropor-
tionately higher share of the reported defects [25].

We have previously introduced property models [13], an ap-
proach to explicitly model many commonalities in the behavior
of a class of typical user interfaces, such as dialog windows. We
showed how an algorithm for computing new values of user in-
terface elements after changing values of other elements and an
algorithm for script recording and playback can be reused across
user interfaces. These algorithms are generic, parametrized by a
(declaratively specified) model that represents the variables manip-
ulated by a user interface and the functional dependencies between
those variables. We suggested that where property models can be
applied, the amount of code is notably reduced and software quality
improves compared to using a traditional GUI framework.

This paper develops the property models approach further. We
focus on how to obtain, alongside computing updated values for
user interface elements, accurate information of which functional
dependencies between user interface elements were active in com-
puting those values. Besides showing how to compute this informa-
tion we explain how it enables further user interface functionality
to be encoded as reusable algorithms. In particular, we show how
this information gives the means for algorithms for the enablement
and disablement of widgets when they are not relevant to the result
of a user interface, and activation and de-activation of command
widgets when the current result of a user interface does not satisfy
stated conditions.

147

Property Models
From Incidental Algorithms to Reusable Components

Jaakko Järvi
Texas A&M University

College Station, TX, U.S.A
jarvi@cs.tamu.edu

Mat Marcus
Adobe Systems, Inc.
Seattle, WA, U.S.A

mmarcus@adobe.com

Sean Parent
Adobe Systems, Inc.
San Jose, CA, U.S.A
sparent@adobe.com

John Freeman
Texas A&M University

College Station, TX, U.S.A
jfreeman@cs.tamu.edu

Jacob N. Smith
Texas A&M University

College Station, TX, U.S.A
jnsmith@cs.tamu.edu

Abstract
A user interface, such as a dialog, assists a user in synthesising a
set of values, typically parameters for a command object. Code for
“command parameter synthesis” is usually application-specific and
non-reusable, consisting of validation logic in event handlers and
code that controls how values of user interface elements change in
response to a user’s actions, etc. These software artifacts are inci-
dental—they are not explicitly designed and their implementation
emerges from a composition of locally defined behaviors.

This article presents property models to capture explicitly the
algorithms, validation, and interaction rules, arising from command
parameter synthesis. A user interface’s behavior can be derived
from a declarative property model specification, with the assistance
of a component akin to a constraint solver. This allows multiple
interfaces, both human and programmatic, to reuse a single model
along with associated validation logic and widget activation logic.

The proposed technology is deployed in large commercial soft-
ware application suites. Where we have applied property models,
we have measured significant reductions in source-code size with
equivalent or increased functionality; additional levels of reuse are
apparent, both within single applications, and across product lines;
and applications are able to provide more uniform access to func-
tionality. There is potential for wide adoption: by our measure-
ments command parameter synthesis comprises roughly one third
of the code and notably more of the defects in desktop applications.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Reuse models; D.2.2 [Design Tools and Techniques]: User inter-
faces

General Terms Algorithms, Design

Keywords Software reuse, Component software, User interfaces,
Declarative specifications, Constraint systems

c� ACM, 2008. This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the Proceedings of the 7th International Conference on Generative
Programming and Component Engineering (Nashville, Tennessee, October 19–20,
2008). GPCE ’08 http://doi.acm.org/10.1145/1449913.1449927

GPCE’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c� 2008 ACM 978-1-60558-267-2/08/10. . . $5.00

1. Introduction
Software systems utilizing reusable components tend to be more
robust and less costly than their hand-crafted counterparts (Basili
et al. 1996; Frakes and Succi 2001; Nazareth and Rothenberger
2004). Indeed, the software industry has been successful in cap-
turing often needed functionality into reusable generic compo-
nents, witnessed by the wide availability of software libraries in
all mainstream programming languages and the ubiquitous use
of components from those libraries. There are, however, domains
commonly encountered in mainstream day-to-day programming in
which reuse remains modest—and in which the industry continues
to struggle with low quality, high defect rates, and low productivity.

As the scale of software increases, software development re-
lies more on reusable components—at the same time, there is an
increase in the amount of code that composes and relates compo-
nents. Often such code is not explicitly designed, and it is rarely
reusable. In larger collections of components, networks of relation-
ships between components arise. We refer to such networks as inci-
dental data structures—data structures that emerge out of compo-
sitions of components and have neither an explicit encoding in the
program nor an explicit run-time representation accessible to the
rest of the program. Consequently, such data structures cannot be
operated on by generic, reusable algorithms. Instead, they are ma-
nipulated with incidental algorithms, similarly emerging from the
combined behavior of locally defined actions, and with no explicit
encoding in the program. We believe that a large reuse potential
exists within incidental algorithms and data structures.

In this paper we describe some of the architectural challenges
in creating reusable libraries for rich user interfaces. We identify
the communication and relationships between different elements
of user interfaces as an architectural domain where incidental data
structures and algorithms are prevalent; we refer to this domain as
command parameter synthesis. We demonstrate a dramatic increase
in re-usability of user interface code if the incidental structures of
command parameter synthesis are modeled explicitly. To represent
these explicit models, we present a new implementation mecha-
nism, property models.

Command parameter synthesis assists a client in selecting and
validating parameters for some command to be executed in the pro-
gram. This is a common task in interactive applications—or in any
application with a non-trivial, human or programmatic, interface.
Typical examples of user interfaces requiring command parame-

© 2017 Adobe Systems Incorporated. All Rights Reserved.

Closing

▪ Good code is necessary, but not sufficient, for building a good UI.
▪ There is significant work in the area of data structures, algorithms to support good UI
▪ And significant work remaining

 86

© 2017 Adobe Systems Incorporated. All Rights Reserved.

References

▪ http://sean-parent.stlab.cc/papers-and-presentations

 87

http://sean-parent.stlab.cc/papers

