
Runtime Polymorphic Generic
Programming—Mixing Objects and Concepts in

ConceptC++

Mat Marcus1 Jaakko Järvi2 Sean Parent1

1Adobe Systems Inc. ({mmarcus|sparent}@adobe.com)

2Texas A&M University (jarvi@cs.tamu.edu)

2007-07-31



Setting

I Generic programming (in the style of STL) is a proven
paradigm for developing reusable libraries

I Non-intrusive
I Static polymorphism (only)

I Object-oriented programming
I Intrusive
I Runtime polymorphism (only)

I This work: combination of both leads to non-intrusive runtime
polymorphism (good thing)

I Presented techniques achieve modularity of components in
Adobe source libraries: succesfully integrated into several
Adobe applications

I Novel idioms for library design and implementation in
ConceptC++



Outline

I Static polymorphism in generic programming

I Dynamic polymorphism in object-oriented programming

I Basics of ConceptC++

I Approach to combine best of both worlds by instantiating
generic components with non-intrusive run-time polymorphic
types

I Implementation details of the approach (very little)

I Conclusions



Static polymorphism of generic programming

template <typename P>
struct layout_engine {

void append(P placeable);
void solve() {

... measure(placeables_m[i], extents_m[i]);

// so lve layout constra ints and update place data m

... place(placeables_m[i], place_data_m[i]); ...
}

vector<extents_t> extents_m;
vector<P> placeables_m;
vector<place_data_t> place_data_m;

}

I measure and place must be overloaded for P (with the right
signature and semantics)



Using the layout engine with a specific widget type

template <typename P> struct layout_engine { ... };

void measure(HIViewRef& t, extents_t& result) { ... };
void place(HIViewRef& t,

const place_data_t& place_data) { ... };

layout_engine<HIViewRef> le;
HIViewRef w;
...
le.append(w);
...
le.solve();



Polymorphism via indirection

struct layout_engine {
void append(PlaceableBase* placeable);
void solve() {

... placeables_m[i]->measure(extents_m[i]);

// so lve layout constra ints and update place data m

... placeables_m[i]->place(place_data_m[i]); ...
}

vector<extents_t> extents_m;
vector<PlaceableBase*> placeables_m;
vector<place_data_t> place_data_m;

}



Using the layout engine with many widget types —
Reference semantics

struct MyWidget : PlaceableBase {
virtual void measure(extents_t&) { ... };
virtual void place(const place_data_t&) { ... };

};

struct YourWidget : PlaceableBase {
virtual void measure(extents_t&) { ... };
virtual void place(const place_data_t&) { ... };
...

};

layout_engine le;
MyWidget* m = new MyWidget();
YourWidget* y = new YourWidget();
...
le.append(m); le.append(y);
...
le.solve();



OO reference semantics

I Intrusive, widget types must inherit from common base

I Ownership unclear



Our approach

I Idioms in ConceptC++ to realize run-time polymorphism in a
transparent way

I We also provide emulations in C++ 2003

I Generic components instantiated with wrappers that provide
run-time polymorphism

I Non-intrusive, no changes needed to wrapped types

I ConceptC++’s adaptation mechanism (concept maps) hide
wrapping from clients

I Retain “value semantics”

I Minimize overhead (small object optimization, move
semantics)



Our approach: example use

I A generic layout engine, oblivious of whether it is used
polymorphically or not

template <Placeable P> struct layout_engine { ... }

I Static use

layout_engine<HIViewRef> le;
HIViewRef w;
le.append(w); ...; le.solve();

I Transparent non-intrusive polymorphic use

layout_engine<poly<placeable>> le2;
HIViewRef w; MyWidget x; YourWidget y;
le2.append(w); le2.append(x); le2.append(y)

I HIViewRef, MyWidget, YourWidget can come from
arbitrary libraries, no need for a common base class or
conformance to certain function signatures



Non-intrusive adaptation with concept maps in
ConceptC++

I The language we use is C++ extended with “concepts”

I Concepts are on their way to the next revision of standard C++
I Key features:

I requires clause — specify constraints on type parameters
I concept — a collection of requirements on a type or types
I concept_map — a non-intrusive adaptation mechanism that

establishes “type models a concept”

I Provides constrained templates for C++ — concept maps and
overloading on constraints ⇒ expressive adaptation
mechanism



Concepts and concept maps

concept Placeable <typename T> : Copyable<T> {
void measure(T& t, extents_t& result);
void place(T& t, const place_data_t& place_data);

}

template <Placeable P> struct layout_engine { ... }

concept_map Placeable<MyWidget> {
void measure(MyWidget& t, extents_t& result) { ... };
void place(MyWidget& t, const place_data_t& place_data) { ... };

}

concept_map Placeable<poly<placeable>> {
void measure(poly<placeable>& t, extents_t& result) {

t.measure(result);
}
void place(poly<placeable>& t, const place_data_t& place_data) {

t.place(place_data);
}

}

layout_engine<MyWidget>;
layout_engine<poly<placeable>>;



Detailed contents of the paper
I How to define wrapper types to provide non-intrusive run-time

polymorphic value types in ConceptC++
1. Implement the concept (Placeable) as an abstract base

class
2. Derive a generic implementation class

(PlaceableImpl<P>) where each member function
delegates to P, which models Placeable.

3. Define a concept map Placeable<MyWidget> for a
particular concrete type MyWidget

4. Implement a handle over over the abstract base class. Make it
constructible from any Placeable type, to be wrapped to
PlaceableImpl

I A commonality/variability analysis that captures reusable
parts to framework/library “poly.” In poly<placeable>

I poly template provides regularity, small object optimization,
move semantics

I placeable provides the interface specific to the
Placeable concept

I Concept refinement dynamically



poly

UserConceptRep

measure()

place()

ctors()

placeable

data_m

poly_base

Interface, template <UserConcept ConcreteType> Instance

assign()

...()

value_m : ConcreteType

poly_state_local

ConcreteType, Interface

assign()

~poly_state_local()

...()

value_ptr_m : ConcreteType

poly_state_remote

ConcreteType, Interface

Handle splits into 3 classes, the 

variability is captured in the user 

supplied UserConceptRep

Interface splits into 2 classes, the 

variability is captured in the user 

supplied Interface

Instance splits into 2 class 

templates, the variability is 

captured in the user supplied 

Instance

clone()

move_clone()

poly_instance

template <UserConcept ConcreteType> class Instance

{OR}

clone()

move_clone()

assign()

~poly_copyable_interface()

...()

poly_copyable_interface

measure()

place()

poly_placeable_interface

measure()

place()

ctors()

poly_placeable_instance

Placeable



Related work

I Boost.Any (Henney)

I Dynamic any (Nasonov)

I Polymorphic wrappers share similarities with existential types



Conclusions

I Mixed paradigm for genuinely composable components
I Non-intrusive
I run-time polymorphic if so wanted: the kind of polymorphism

(static, dynamic) becomes property of client of a library, not
hard-coded to the interface

I Foundation of APIs of many components in Adobe Source
libraries that have proven to be highly composable

I Layout library, layout parser, property model library, property
model parser

I Future directions: parameterization over concepts would be
useful


	Introduction

